Basic linear algebra background

\$ориа пьиости

Vectors and matrices

mist 23.f min, xyz
We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^{n}, while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. That's it: ${ }^{1}$

Kype nogobṓ . TECT6I

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad x^{T}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right.
$$

Tbépgo u retro:
Similarly, if $A \in \mathbb{R}^{m \times n}$ we denote transposition as $A^{T} \in \mathbb{R}^{n \times m}$:

$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}a_{11} & a_{21} & \ldots & a_{m 1} \\ a_{12} & a_{22} & \ldots & a_{m 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & \ldots & a_{m n}\end{array}\right]$
We will write $x \geq 0$ and $x \neq 0$ to indicate componentwise relationships

A matrix is symmetric if $A=A^{T}$. It is denoted as $A \in \mathbb{S}^{n}$ (set of square symmetric matrices of dimension n). Note, that only square matrix could be symmetric by definition.

A matrix $A \in \mathbb{S}^{n}$ is called positive (negative) definite if for all $x \neq 0: x^{T} A x>(<) 0$

Basic linear algebra background

Vectors and matrices

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^{n}, while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. That's it: ${ }^{1}$

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad x^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \quad x \in \mathbb{R}^{n}, x_{i} \in \mathbb{R}
$$

Similarly, if $A \in \mathbb{R}^{m \times n}$ we denote transposition as $A^{T} \in \mathbb{R}^{n \times m}$:
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}a_{11} & a_{21} & \ldots & a_{m 1} \\ a_{12} & a_{22} & \ldots & a_{m 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & \ldots & a_{m n}\end{array}\right] \quad A \in \mathbb{R}^{m \times n}, a_{\imath}$
We will write $x \geq 0$ and $x \neq 0$ to indicate componentwise relationships

A matrix is symmetric if $A=A^{T}$. It is denoted as $A \in \mathbb{S}$ (set of square symmetric matrices of dimension n). Note, that only square matrix could be symmetric by definition.

A matrix $A \in \mathbb{S}^{n}$ is called positive (negative) definite if for all $x \neq 0: x^{T} A x>(<) 0$
. We denote this as $A \succ(\prec) 0$. The set of such matrices is denoted $\mathbb{S}_{++}^{n}\left(\mathbb{S}_{--}^{n}\right)$ A matrix $A \in \mathbb{S}^{n}$ is called positive (negative) semidefinite if for all $x: x^{T} A x \geq(\leq$ $) 0$. We denote this as $A \succeq(\preceq) 0$. The set of such matrices is denoted as $\mathbb{S}_{+}^{n}\left(\mathbb{S}_{-}^{n}\right)$
(:) QUESTION
Is it correct, that positive definite matrix has all positive entries?

Matrix and vector product

Let A be a matrix of size $m \times n$, and B be a matrix of size $n \times p$, and let the product $A B$ be:

$$
\underset{m \times p}{C}=\underset{m \times n \times P}{A B}
$$

$$
\begin{aligned}
& \text { CTPOKA } \\
& \text { Ha } \\
& \text { CTO IDly }
\end{aligned}
$$

then C is a $m \times p$ matrix, with element (i, j) given by:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

This operation in a naive form requires $\mathcal{O}\left(n^{3}\right)$ arithmetical operations, where n is usually assumed as the largest dimension of matrices.

(2) QUESTION

Is it possible to multiply two matrices faster, then $\mathcal{O}\left(n^{3}\right)$? How about $\mathcal{O}\left(n^{2}\right)$, \mathcal{O} (k) ?

Let A be a matrix of shape $m \times n$, and x be $n \times 1$ vector, then the i-th component of the product:
is given by:

$$
z_{i}=\sum_{k=1}^{n} a_{i k} x_{k}
$$

Remember, that:

- $C=A B \quad C^{T}=B^{T} A^{T}$
- $A B \neq B A$
- $e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}$
- $e^{A+B} \neq e^{A} e^{B}$ (but if A and B are commuting matrices, which means that $A B=$ $\left.B A, e^{A+B}=e^{A} e^{B}\right)$
- $\langle x, A y\rangle=\left\langle A^{T} x, y\right\rangle$

Norms and scalar products

Norm is a qualitative measure of smallness of a vector and is typically denoted as $\|x\|$.

The norm should satisfy certain properties:
$1 \quad\|\alpha x\|=|\alpha|\|x\|, \alpha \in \mathbb{R}$
$2\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
3 If $\|x\|=0$ then $x=0$
The distance between two vectors is then defined as

$$
d(x, y)=\|x-y\| .
$$

The most well-known and widely used norm is euclidean norm:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.

Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

There are two very important special cases:

- Infinity norm, or Chebyshev norm is defined as the element of the maximal absolute value:

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

- L_{1} norm (or Manhattan distance) which is defined as the sum of modules of the
elements of x :

$$
\|x\|_{1}=\sum_{i}\left|x_{i}\right|
$$

L_{1} norm plays very important role: it all relates to the compressed sensing methods that emerged in the mid-00s as one of the most popular research topics. The code for picture below is available here: Open In Colab

In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes the simplest matrix norm Frobenius norm:

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Spectral norm, $\|A\|_{2}$ is one of the most used matrix norms (along with the Frobenius norm).

enektpant нeal

$$
\|A\|_{2}=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

нориа

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It holds

$$
\|A\|_{2}=\sigma_{1}(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

where $\sigma_{1}(A)$ is the largest singular value of the matrix A.

```
(2) quESTION
Is it true, that all matrix norms satisfy submultiplicativity propert::|AB|\leq
|A|||B|?H-Hint: consider Chebyshev matrix norm |A||
```

$$
\langle x, x\rangle=\|x\|^{2}
$$

$$
\langle x, y\rangle=\underset{\substack{1 \times n \times 1}}{x^{T} y}=\sum_{i=1}^{n} x_{i} y_{i}=y^{T} x=\langle y, x\rangle
$$

Here x_{i} and y_{i} are the scalar i-th components of corresponding vectors.

QUESTION
Is there any connection between the norm $\|\cdot\|$ and scalar product $\langle\cdot, \cdot\rangle$?

EXAMPLE
$x^{-1} A y$
Prove, that you can switch the position of a matrix inside scalar product with transposition: $\left\langle\langle x, A y\rangle=\left\langle A^{T} x, y\right\rangle\right.$ and $\langle x, y B\rangle=\left\langle x B^{T}, y\right\rangle$

The standard scalar (inner) product between matrices X and Y from $\mathbb{R}^{m \times n}$ is given by

$$
\langle X, Y\rangle=\operatorname{tr}\left(\underset{n \times m}{X_{n \times n}^{T}} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}=\operatorname{tr}\left(Y^{T} X\right)=\langle Y, X\rangle
$$

(:) QUESTION
Is there any connection between the Frobenious norm $\|\cdot\|_{F}$ and scalar product between matrices $\langle\cdot, \cdot\rangle$?

풀 EXAMPLE
Simplify the following expression:
$\sum_{i=1}^{n}\left\langle S^{-1} a_{i}, a_{i}\right\rangle$, where $S=\sum_{i=1}^{n} a_{i} a_{i}^{T}, a_{i} \in \mathbb{R}^{n}, \operatorname{det}(S) \neq 0$

- Solution 1) $\sum_{i=1}^{n}\left\langle S^{-1} a_{i} a_{i}\right\rangle^{m_{i i}}:=\sum_{i=1}^{n} m_{i i}=\operatorname{tr}(M)$

4) $x=\operatorname{tr}\left(A^{\top} S^{-1} A\right)=\operatorname{tr}\left(A A^{\top} \cdot S^{-1}\right)=\operatorname{tr}\left(S S^{a_{i}^{\top}}\right)=\operatorname{tr} I=n$.
