Theory / Matrix calculus

Basic linear algebra background

Vectors and matrices

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^n , while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m imes n}$. Th

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \qquad \begin{array}{c} 0.3 \\ 0.3 \\ 0.2$$

Popula Nonocmu

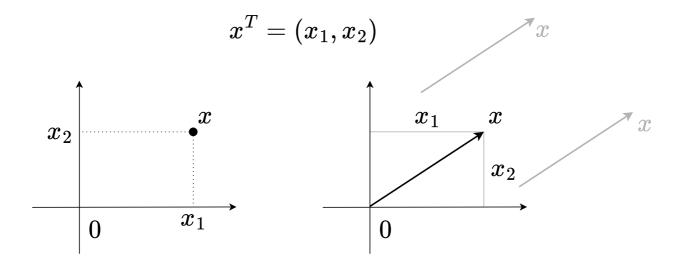
mipt 23. fmin.xyz

Tpytha

Similarly, if $A \in \mathbb{R}^{m \times n}$ we denote transposition as $A^T \in \mathbb{R}^{n \times m}$:

										(VIV)
	a_{11}	a_{12}		a_{1n}		a_{11}	a_{21}		a_{m1}	later
A =	a_{21}	a_{22}		a_{2n}	A'/'	a_{12}	a_{22}		a_{m2}	$A \in \mathbb{R}^{m imes n}, a_i$
	•	•	•••	•		•	•	•	•	
	a_{m1}		• • •	a_{mn}		a_{1n}	a_{2n}	• • •	\dot{a}_{mn}	

We will write $x \geq 0$ and $x \neq 0$ to indicate componentwise relationships



A matrix is symmetric if $A = A^T$. It is denoted as $A \in \mathbb{S}^n$ (set of square symmetric matrices of dimension n). Note, that only square matrix could be symmetric by definition.

A matrix $A\in\mathbb{S}^n$ is called **positive (negative) definite** if for all $x
eq 0:x^TAx>(<)0$

Basic linear algebra background

Vectors and matrices

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^n , while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. That's it: ¹

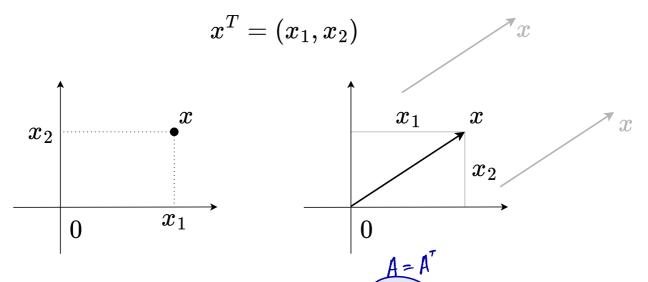
 $\rightarrow \min_{x,y,z}$

$$x = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \quad x^T = egin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$

Similarly, if $A \in \mathbb{R}^{m imes n}$ we denote transposition as $A^T \in \mathbb{R}^{n imes m}$:

$$A = egin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \ a_{21} & a_{22} & \ldots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix} \quad A^T = egin{bmatrix} a_{11} & a_{21} & \ldots & a_{m1} \ a_{12} & a_{22} & \ldots & a_{m2} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix} \quad A \in \mathbb{R}^{m imes n}, a_{n}$$

We will write $x \geq 0$ and $x \neq 0$ to indicate componentwise relationships



A matrix is symmetric if $A = A^T$. It is denoted as $A \in S^n$ (set of square symmetric matrices of dimension n). Note, that only square matrix could be symmetric by definition.

A matrix $A \in \mathbb{S}^n$ is called **positive (negative) definite** if for all $x \neq 0$: $x^T A x > (<) 0$

. We denote this as $A \succ (\prec) 0$. The set of such matrices is denoted as $\mathbb{S}^n_{++}(\mathbb{S}^n_-)$

A matrix $A\in \mathbb{S}^n$ is called **positive (negative) semidefinite** if for all $x:x^TAx\geq (\leq$)0. We denote this as $A \succeq (\preceq)0$. The set of such matrices is denoted as $\mathbb{S}^n_+(\mathbb{S}^n_-)$

QUESTION

Is it correct, that positive definite matrix has all positive entries?

Matrix and vector product

Let A be a matrix of size m imes n, and B be a matrix of size n imes p, and let the product AB be:

строка на пто лбез

then C is a $m \times p$ matrix, with element (i, j) given by:

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

This operation in a naive form requires $\mathcal{O}(n^3)$ arithmetical operations, where n is usually assumed as the largest dimension of matrices.

QUESTION

?

Is it possible to multiply two matrices faster, then $\mathcal{O}(n^3)$? How about $\mathcal{O}(n^2)$

Let A be a matrix of shape m imes n, and x be n imes 1 vector, then the i-th component of the product:

$$z = Ax$$

may make

is given by:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Remember, that:

- $\cdot C = AB \quad C^T = B^T A^T$
- $AB \neq BA$

$e^A = \sum\limits_{k=0}^\infty rac{1}{k!} A^k$, we the second relation a^k . The second relation a^k

- + $e^{A+B}
 eq e^A e^B$ (but if A and B are commuting matrices, which means that AB = BA, $e^{A+B} = e^A e^B$)
- $\cdot \quad \langle x,Ay\rangle = \langle A^Tx,y\rangle$

Norms and scalar products

Norm is a **qualitative measure of smallness of a vector** and is typically denoted as ||x||.

The norm should satisfy certain properties:

- 1 $\|lpha x\| = |lpha| \|x\|$, $lpha \in \mathbb{R}$
- 2 $\|x+y\| \leq \|x\| + \|y\|$ (triangle inequality)
- 3 If ||x|| = 0 then x = 0

The distance between two vectors is then defined as

$$d(x,y) = \|x - y\|.$$

The most well-known and widely used norm is **euclidean norm**:

$$\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$$

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.

Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

$$\|x\|_p = \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}.$$

There are two very important special cases:

Infinity norm, or Chebyshev norm is defined as the element of the maximal absolute value:

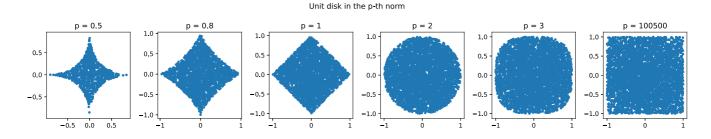
$$\|x\|_\infty = \max_i |x_i|$$

• L_1 norm (or **Manhattan distance**) which is defined as the sum of modules of the

elements of x:

$$\|x\|_1 = \sum_i |x_i|$$

 L_1 norm plays very important role: it all relates to the **compressed sensing** methods that emerged in the mid-00s as one of the most popular research topics. The code for picture below is available here: **Open In Colab**



In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes the simplest matrix norm **Frobenius** norm:

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2
ight)^{1/2}$$

Spectral norm, $||A||_2$ is one of the most used matrix norms (along with the Frobenius norm).

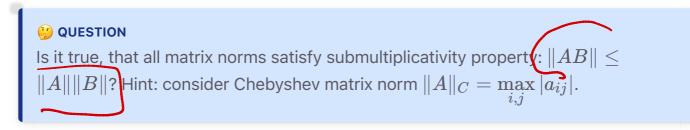
$$\|A\|_2 = \sup_{x
eq 0} rac{\|Ax\|_2}{\|x\|_2},$$

Hopma

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are efficient algorithms to compute it. It is directly related to the **singular value decomposition** (SVD) of the matrix. It holds

$$\|A\|_2 = \sigma_1(A) = \sqrt{\lambda_{\max}(A^T A)}$$

where $\sigma_1(A)$ is the largest singular value of the matrix A.



The standard **scalar (inner) product** between vectors x and y from \mathbb{R}^n is given by

<X,X>= ||X||

$$\langle x,y
angle = x^Ty = \sum_{i=1}^n x_iy_i = y^Tx = \langle y,x
angle$$
 1xn nxs $_{i=1}^n$

Here x_i and y_i are the scalar *i*-th components of corresponding vectors.

QUESTION

Is there any connection between the norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot\rangle$?

KA X II EXAMPLE Prove, that you can switch the position of a matrix inside scalar product with transposition: $\langle x,Ay angle=\langle A^Tx,y angle$ and $\langle x,yB angle=\langle xB^T,y angle$

The standard scalar (inner) product between matrices X and Y from $\mathbb{R}^{m \times n}$ is given by

$$\langle X,Y
angle = \mathrm{tr}(X^TY) = \sum_{i=1}^m \sum_{j=1}^n X_{ij}Y_{ij} = \mathrm{tr}(Y^TX) = \langle Y,X
angle$$

QUESTION

 $\|X\|_{\mathbf{F}}^{2} = \langle X, X \rangle$ Is there any connection between the Frobenious norm $\|\cdot\|_F$ and scalar product between matrices $\langle \cdot, \cdot \rangle$?

👰 EXAMPLE

Simplify the following expression:

$$\sum_{i=1}^{n} \langle S^{-1}a_{i}, a_{i} \rangle, \text{ where } S = \sum_{i=1}^{n} a_{i}a_{i}^{T}, a_{i} \in \mathbb{R}^{n}, \det(S) \neq 0$$

$$\text{Solution } I) = \sum_{i=1}^{n} \langle S^{-1}a_{i}, a_{i} \rangle = \sum_{i=1}^{n} m_{ii} = tr(M)$$

$$\frac{1}{2} \sum_{i=1}^{n} A \cdot A^{T}, \text{ sige } A = \left(\begin{vmatrix} a_{i} & \dots & a_{n} \\ 1 & \dots & a_{n} \end{vmatrix} \right), A^{T} = \left(\begin{vmatrix} -a_{i}^{T} & \dots & a_{n} \\ -a_{n}^{T} & \dots & a_{n} \end{vmatrix} \right), S^{-1} = \left(A^{T} \cdot A^{T} \right) = A^{T} \cdot A^{T} = S^{T}$$

$$3) m_{ii} = a_{i}^{T} S^{T}a_{i} \qquad \text{Ecum } M = A^{T} \cdot S^{T}A \qquad S^{T} \left(a_{i}^{T} - a_{i}^{T} \right) = A^{T} \cdot A^{T} = S^{T}$$

$$4) \mathcal{R} = tr(A^{T}S^{T}A) = tr(AA^{T} \cdot S^{T}) = tr(SS^{T}) = trI = n$$