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Basic linear algebra background
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We will treat all vectors as column vectors by default. The space of real vectors of

length n is denoted by R™, while the space of real-valued m X n matrices is denoted
by R™*" . That's it:
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Similarly, if A € R™*™ we denote transposition as AT € R™»*™: wi « Qoicbex
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We will write z > 0 and « # 0 to indicate componentwise relationships
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A matrix is symmetric if A = AT Itis denoted as A € S” (set of square symmetric
matrices of dimension 11). Note, that only square matrix could be symmetric by
definition.

A matrix A € S” is called positive (negative) definite if for all z # 0 : 27 Az > (<)0
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. We denote this as A > (<)0. The set of such matrices is denoted@s S | (S" _)

A matrix A € S™ is called positive (negative) semidefinite if for all z : 27 Az > (<
)0. We denote this as A > (=)0. The set of such matrices is denoted as S} (S™)

(%) QUESTION
Is it correct, that positive definite matrix has all positive entries?

Matrix and vector product

Let A be a matrix of size m x mn, and B be a matrix of size n X p, and let the product
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then C'is am X p matrix, with element (¢, j) given by:

n
Cij = E Qikbk;.-
k=1

This operation in a naive form requires O(n3) arithmetical operations, wherg n is

usually assumed as the largest dimension of matrices. O ( Kogz?

() QUESTION
Is it possible to multiply two matrices faster, then O(n3)? How about O(n?), O
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Let A be a matrix of shape m X n, and & be n x 1 vector, then the i-th component of

z = Ax |A O(V\Z
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the product:

is given by:

Remember, that:

C =AB CT =BTAT
AB +# BA
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eAtB =+ eeB (butif A and B are commuting matrices, which means that AB =
BA, €A+B — eAeB)
(x, Ay) = (AT z,y)

Norms and scalar products

Norm is a qualitative measure of smallness of a vector and is typically denoted as
|-

The norm should satisfy certain properties:

1 o] = |ef|zf, o € R
2 |z +y|| < || + ||y| (triangle inequality)
3 If||z|| =0thenz =0

The distance between two vectors is then defined as
d(z,y) = ||z —yl|.

The most well-known and widely used norm is euclidean norm:

which corresponds to the distance in our real life. If the vectors have complex elements,
we use their modulus.

Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

fellp = (3 1ex) ™.
p=ll

There are two very important special cases:

Infinity norm, or Chebyshev norm is defined as the element of the maximal absolute
value:

[]loc = max Jas

L1 norm (or Manhattan distance) which is defined as the sum of modules of the



elements of x:

L1 norm plays very important role: it all relates to the compressed sensing methods
that emerged in the mid-00s as one of the most popular research topics. The code for

picture below is available here: Open In Colab
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In some sense there is no big difference between matrices and vectors (you can
vectorize the matrix), and here comes the simplest matrix norm Frobenius norm:

1Al = )Y lail?

i=1 j=1

1/2

Spectral norm, || A||2 is one of the most used matrix norms (along with the Frobenius

norm). enacpal Hald
Az HopuQ
||AH2 — sup H HZ,
220 ||z|l2

It can not be computed directly from the entries using a simple formula, like the
Frobenius norm, however, there are efficient algorithms to compute it. It is directly
related to the singular value decomposition (SVD) of the matrix. It holds

|4ll2 = 61(4) = 1/ Aax (AT A)

where o1(A) is the largest singular value of the matrix A.

() QUESTION
Is it true, that all matrix norms satisfy submultiplicativity propert{: || AB|| <

| Al ||B||?!Hint: consider Chebyshev matrix norm || A||c = e |aij|-

The standard scalar (inner) product between vectors x and y from R" is given by




X, X>= 1K1

(z,y) == y—zwzyz—y z = (y,T)

Ton o8

Here x; and y; are the scalar ¢-th components of corresponding vectors.

) QUESTION
Is there any connection between the norm || - || and scalar product (-, -)?
kd EXAMPLE // X ‘x a

Prove, that yoyu can switch the pasition of a matrix inside scalar product with
transposition: |(z, Ay) = (AT z,y)and (z,yB) = (zBT,y)

The standard scalar (inner) product between matrices X and Y from R"*"™ is given
by

(X,Y) =tr(XTY) = ZZX Y =tr(YTX) = (V,X)

nm ™Mxn
n i=1 j=1

() QUESTION |\>< ”F A X X>
Is there any connection between the Frobenious norm || - || and scalar product
between matrices (-, -)?
k1 EXAMPLE
Simplify the following expression:
> (87 1a;, a;), wherelS = 3" a;al |a; € R™, det(S) # 0
i=1 i=1
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