
1 What is Linear Programming?

Generally speaking, all problems with linear objective and linear equalities/inequalities constraints could be considered as Linear Programming.
However, there are some widely accepted formulations.

for some vectors ,  and matrix . Where the inequalities are interpreted component-wise.

Standard form. This form seems to be the most intuitive and geometric in terms of visualization. Let us have vectors ,  and
matrix .

2 Examples of LP problems

Imagine, that you have to construct a diet plan from some set of products: . Each of the products has its own vector of nutrients. Thus, all the
food information could be processed through the matrix . Let also assume, that we have the vector of requirements for each of nutrients . We need
to find the cheapest configuration of the diet, which meets all the requirements:
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Diet problem
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Source
The prototypical transportation problem deals with the distribution of a commodity from a set of sources to a set of destinations. The object is to minimize
total transportation costs while satisfying constraints on the supplies available at each of the sources, and satisfying demand requirements at each of the
destinations.
Here we illustrate the transportation problem using an example from Chapter 5 of Johannes Bisschop, “AIMMS Optimization Modeling”, Paragon Decision
Sciences, 1999. In this example there are two factories and six customer sites located in 8 European cities as shown in the following map. The customer sites
are labeled in red, the factories are labeled in blue.

Customer Arnhem [€/ton] Gouda [€/ton] Demand [tons]

London n/a 2.5 125

Berlin 2.5 n/a 175

Maastricht 1.6 2.0 225

Amsterdam 1.4 1.0 250

Utrecht 0.8 1.0 225

The Hague 1.4 0.8 200

Supply [tons] 550 tons 700 tons

Illustration

Transportation problem

West Europe Map



This can be represented as the following graph:

For each link we can have a parameter  denoting the cost of shipping a ton of goods over the link. What we need to determine is the amount of goods to
be shipped over each link, which we will represent as a non-negative decision variable .
The problem objective is to minimize the total shipping cost to all customers from all sources.

Shipments from all sources can not exceed the manufacturing capacity of the source.

Shipments to each customer must satisfy their demand.

The code for the problem is available here: 

Source
A brewery receives an order for 100 gallons of 4% ABV (alchohol by volume) beer. The brewery has on hand beer Okhota that is 4.5% ABV that cost USD 0.32 per
gallon to make, and beer Baltos that is 3.7% ABV and cost USD 0.25 per gallon. Water could also be used as a blending agent at a cost of USD 0.05 per gallon.
Find the minimum cost blend that meets the customer requirements.

If we let subscript  denote a blending component from the set of blending components , and denote the volume of  used in the blend as , the cost of the
blend is

where  is the price per unit volume of . Using the Python data dictionary defined above, the price  is given by data[c]['cost'] .

The customer requirement is produce a total volume . Assuming ideal solutions, the constraint is given by

where  denotes the volume of component  used in the blend.

Graph associated with the problem

T [c, s]
x[c, s]

minimize: Cost = T [c, s]x[c, s]
c∈Customers

∑
s∈Sources

∑
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Blending problem

2.0.1 Model Formulation
2.0.1.1 Objective Function
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The product composition is specified as 4% alchohol by volume. Denoting this as , the constraint may be written as

where  is the alcohol by volume for component . As written, this is a nonlinear constraint. Multiplying both sides of the equation by the denominator yields
a linear constraint

A final form for this constraint can be given in either of two versions. In the first version we subtract the le!-hand side from the right to give

Alternatively, the summation on the le!-hand side corresponds to total volume. Since that is known as part of the problem specification, the blending
constraint could also be written as

Which should you use? Either will generally work well. The advantage of version 1 is that it is fully specified by a product requirement , which is sometimes
helpful in writing elegant Python code.
The code for the problem is available here: 

3 Basic transformations

Inequality to equality by increasing the dimension of the problem by .

unsigned variables to nonnegative variables.

Could be equivalently written as a LP with thre replacement of maximum coordinate of a vector:

Could be equivalently written as a LP with thre replacement of the sum of coordinates of a vector:

2.0.1.3 Product Composition Constraint
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V =Ā x A  Version 2 of the linear blending constraint
c∈C

∑ c c

Ā
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Chebyshev approximation problem

∥Ax −
x∈Rn
min b∥ ↔∞ ∣a x −

x∈Rn
min

i
max i

⊤ b ∣i

s.t. 

t
t∈R,x∈Rn

min

a x − b ≤ t, i = 1, … , ni
⊤

i

− a x + b ≤ t, i = 1, … , ni
⊤

i

l_1 approximation problem

∥Ax −
x∈Rn
min b∥ ↔1 ∣a x −

x∈Rn
min

i=1

∑
n

i
⊤ b ∣i



4 Duality

There are four possibilities:

Both the primal and the dual are infeasible.
The primal is infeasible and the dual is unbounded.
The primal is unbounded and the dual is infeasible.
Both the primal and the dual are feasible and their optimal values are equal.

Ensure, that the following standard form LP:

Has the following dual:

Find the dual problem to the problem above (it should be the original LP).

5 Idea of simplex algorithm

The Simplex Algorithm walks along the edges of the polytope, at every corner choosing the edge that decreases  most
This either terminates at a corner, or leads to an unconstrained edge (  optimum)

We will illustrate simplex algorithm for the simple inequality form of LP:

Definition: a basis  is a subset of  (integer) numbers between  and , so that . Note, that we can associate submatrix  and
corresponding right-hand side  with the basis . Also, we can derive a point of intersection of all these hyperplanes from basis: 
.

If , then basis  is feasible.

A basis  is optimal if  is an optimum of the .
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s.t. 

c x
x∈Rn
min ⊤

Ax = b

x ≥ 0, i = 1, … , ni

s.t. 

b y
y∈Rn
max ⊤

A y ⪯ cT

c x⊤

−∞

s.t. 

c x
x∈Rn
min ⊤

Ax ≤ b

(LP.Inequality)

B n 1 m rankA =B n AB

bB B x =B A bB
−1

B

Ax ≤B b B

B xB LP.Inequality



1. If Standartd LP has a nonempty feasible region, then there is at least one basic feasible point
2. If Standartd LP has solutions, then at least one such solution is a basic optimal point.
3. If Standartd LP is feasible and bounded, then it has an optimal solution.

Since we have a basis, we can decompose our objective vector  in this basis and find the scalar coe"icients :

If all components of  are non-positive and  is feasible, then  is optimal.

Suppose, some of the coe"icients of  are positive. Then we need to go through the edge of the polytope to the new vertex (i.e., switch the
basis)

Illustration
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Let us consider .

The proposed algorithm requires an initial basic feasible solution and corresponding basis. To compute this solution and basis, we start by
multiplying by  any row  of  such that . This ensures that . We then introduce artificial variables  and consider
the following LP:

which can be written in canonical form  by setting

An initial basis for  is  with corresponding basic feasible solution . We can
therefore run the simplex method on , which will converge to an optimum . . There are several possible
outcomes:

. Original primal is infeasible.
. The obtained solution is a start point for the original problem (probably with slight modification).

6 Convergence

Since the number of edge point is finite, algorithm should converge (except some degenerate cases, which are not covered here). However, the
convergence could be exponentially slow, due to the high number of edges. There is the following iconic example, when simplex algorithm should
perform exactly all vertexes.

Illustration
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5.2 Finding an initial basic feasible solution
LP.Canonical
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In the following problem simplex algorithm needs to check  vertexes with .

7 Summary

A wide variety of applications could be formulated as the linear programming.
Simplex algorithm is simple, but could work exponentially long.
Khachiyan’s ellipsoid method is the first to be proved running at polynomial complexity for LPs. However, it is usually slower than simplex in
real problems.
Interior point methods are the last word in this area. However, good implementations of simplex-based methods and interior point methods
are similar for routine applications of linear programming.

8 Code

Open In Colab

9 Materials

Linear Programming. in V. Lempitsky optimization course.
Simplex method. in V. Lempitsky optimization course.
Overview of di"erent LP solvers
TED talks watching optimization

6.1 Klee Minty example
2 −n 1 x =0 0
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Illustration



Overview of ellipsoid method
Comprehensive overview of linear programming
Converting LP to a standard form


