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Methods

1 General formulation

min f()

s.t. gi(z) <0,i=1,...,m
hi(z) =0, j=1,...,k

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

¢ In fact, there might be very challenging to recognize the convenient form of optimization problem.
¢ Analytical solution of KKT could be inviable.

1.1 Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

{wt}7

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution .

lllustration of iterative method approaches to the solution *

def GeneralScheme(x, epsilon):
while not StopCriterion(x, epsilon):
OracleResponse = RequestOracle(x)
x = NextPoint(x, OracleResponse)
return x

1.2 Oracle conception
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f(x), £(x o), F( x)
Black - box

Depending on the maximum order of derivative available from the oracle we call the oracles as zero order, first order, second order oravle and etc.

2 Unsolvability of numerical optimization problem mmn ’(: ®

xe©

In general, optimization problems are unsolvable. "\(Y/)/~

Consider the following simple optimization problem of a function over unit cube:

min f(z) /? p UK
zeRn “
s.t.z € C" b t——>
x* Xi
We assume, that the objective function f(+) : R” — Ris Lipschitz continuous on &™: ”X _ x*" s 3
K

£(z) = F(¥)| < Lllz = ylloYz,y € C",

with some constant L (Lipschitz constant). Here C" - the n-dimensional unit cube

C'={zeR"|0<z;<1i=1,...,n}

Our goalistofindsuch & : |f(Z) — f*| < & forsome positive €. Here f* is the global minima of the problem. Uniform grid with p points on
each dimension guarantees at least this quality:

12 = zufloo < -

LB
= 28

which means, that P

1@ - fe) £ |= E

2p

Our goal is to find the p for some €. So, we need to sample@oints, since we need to measure function in p” points. Doesn’t look scary, but

ifwe'lltake L = 2,n = 11, = 0.01, computations on th&Modern personal computers will take 31,250,000 years.
~ SN N

2.1 Stopping rules

e Argument closeness:




|2k — 2]l < €

e Function value closeness:

Ifr = Flla<e

e Closeness to a critical point

1/ (k) ll2 < &

Butz, and f* = f(x.) are unknown!
Sometimes, we can use the trick: ég La
-—

|Zri1 — Zell|= llTpsr — 2 + 20 — 2| < [|@pgr — 2| + |2 — 24| < 26
S ——y

Hwarl - wkHz

Note: it’s better to use relative changing of these values, i.e. H H
Tk |2

Kl Example
Suppose, you are trying to estimate the vector &4, with some approximation & gpr02- One can choose between two relative errors:

”wapprox - mtrué'l ”mapproz - wtrue”

”mapprow [ l|Ztrue

102 4pue OF ZTapprow = 0.0124, they differ drastically).

2.2 Local nature of the methods

®
X

Illustration of the idea of locality in black-box optimization

3 Contents of the chapter

%)
slope =1 ()
Y,

$1(x)
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iteration
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Gradient descent Newton method Quasi Newton methods Subgradient descent

LLS with /; regularization. 50 runs. A = 0.9

If both & gpprox and e are close to each other, then the difference between them is small, while if your approximation is far from the truth (say, Zappror =

40 60
iteration
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Theory > Rates of convergence

Rates of convergence

1 Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for different types of convergence. L%t r = {||zr — z*||2} bea
sequence in R™ that converges to zero. RN

1.1 Linear convergence

e € V< \

We can define the /inear convergence in a two different forms: ~

lzkis — 2"l < O or lzpsr — &2 < gllzx — 2",

for all sufficiently large k. Here ¢ € (0, 1) and 0 < C' < oo. This means that the distance to the solution £* decreases at each iteration by at

least a constant factor bounded away from 1. Note, that sometimes this type of convergence is also called exponential or geometric. We call the q
the convergence rate.

(%) Question

Suppose, you have two sequences with linear convergence rates g1 = 0.1 and g2 = 0.7, which one is faster?

K&l Example

Let us have the following sequence:

Tk:3—k

1 i
One can immediately conclude, that we have a linear convergence with parameter@d C :ﬁ.

() Question

Let us have the following sequence: —_ L—
— 97 3
T = 37 L‘
C=
Will this sequence be convergent? What is the convergence rate?

1.2 Sublinear convergence

If the sequence 7, converges to zero, but does not have linear convergence, the convergencezsaid to be sublinear. Sometimes we can considet
the following class of sublinear convergence:

4
|Trs1 — 2|2 < CKY,

whereg < 0and 0 < C' < 00. Note, that sublinear convergence means, that the sequence is converging slower, than any geometric
progression.

1.3 Superlinear convergence qk —0

The convergence is said to be superlinearif:

|z —a*la < Cd" o | [laki — 2|y < Qellze = 22

whereq € (0, 1) or0 < Cj < 00,C) — 0. Note, that superlinear convergence is also linear convergence (one can even say, that it is linear
convergence with ¢ = 0).

1.4 Quadratic convergence



k
lzie —2*lla < Cq* | or  [lerer — 2|z < Cllaw — 273,

whereg € (0,1)and 0 < C' < 0.

Sublinear, a = -7
Superlinear, g = 0.9

Linear, q = 0.5
Quadratic, g = 0.9 A\ é‘&”
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Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton’s method converges quadratically
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Error rate upper bound

10—10 4
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under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problemis ill-conditioned
the convergence constant q is close to 1.

2 How to determine convergence type

X i

2.1 Root test W puaap

2
Let {rk}zo:m be a sequence of non-negative numbers, converging to zero, and le (_bQ?

_ 1/’“ P
=R V| &°

If0 < g < 1,fhen {ry}?° . has linear convergence with constant g. ’Y @G @HQU.

e Inparticular,if g = 0,then {7z }%°  has superlinear convergence.

? Cx-T6

Ifg = 1,then {ry}32,, has sublinear convergence. \ /\\ —\_ _"/O
e Thecaseq > Lisi ibl r X - —
q is impossible.
] w e Tl ke <
2.2 Ratiotest | 140  oTHOUWULUU \

Let {rk}z":m be a sequence of strictly positive numbers converging to zero. Let

. k+1 = L
= lim —— Yv. - 600
4 k—oo Tp 'w
L
o Ifthereexistsqgand 0 < g < 1,l|hen {7y }32 . has linear convergence with constant g. r K _ J"‘gw = 7
z
* Tn particular, Tq = O, then {7 Fk‘bo:m has superlinear convergence. ® \m
U] 2
e If g does not exist, butqg = lim sup,, has linear convergence with a constant not exceeding q.
KR—00
.. Tkt+1 59 .
4 If lim inf, —— = 1,then {74 }2,, has sublinear convergence.
k—oo %
e The case hm lnfk —=>1 |$|mp055|ble
k—o00 Tk
Tk+1 . .
e Inall other cases (i.e., when lim 1nfk — < 1 < lim sup,, + ——) we cannot claim anything concrete about the convergence rate
k—o0 Tk k—o0 Tk
{rk}zo:m'

304&'.
K Example
Let us have the following sequence: Y'Od; f Mﬂo . |<
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l Determine the convergence

Kl Example

Determine the convergence

Kl Example

Determine the convergence

Kl Try to use root test here

Determine the convergence

3 References

Let us have the following sequence:

Let us have the following sequence:

Let us have the following sequence:

VK-H _ 1

¢ Code for convergence plots - Open In Colab

e CMC seminars (ru)

e Numerical Optimization by J.Nocedal and S.J.Wright



