## Methods

## 1 General formulation

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { s.t. } g_{i}(x) \leq 0, i=1, \ldots, m \\
h_{j}(x)=0, j=1, \ldots, k
\end{gathered}
$$

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

- In fact, there might be very challenging to recognize the convenient form of optimization problem.
- Analytical solution of KKT could be inviable.


### 1.1 Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

$$
\left\{x_{t}\right\}
$$

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution $x_{*}$.


Illustration of iterative method approaches to the solution $x^{*}$

```
def GeneralScheme(x, epsilon):
    while not StopCriterion(x, epsilon):
        OracleResponse = RequestOracle(x)
        x = NextPoint(x, OracleResponse)
    return x
```


### 1.2 Oracle conception



Depending on the maximum order of derivative available from the oracle we call the oracles as zero order, first order, second order oravle and etc.

## 2 Unsolvability of numerical optimization problem

In general, optimization problems are unsolvable. ${ }^{-}$(ツ)/ ${ }^{-}$
Consider the following simple optimization problem of a function over unit cube:

|  |
| :--- |
| $\min _{x \in \mathbb{R}^{n}} f(x)$ |
| s.t. |
| $x \in \mathbb{C}^{n}$ |

We assume, that the objective function $f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous on $\mathbb{X}^{n}$ :

$$
|f(x)-f(y)| \leq L\|x-y\|_{\infty} \nmid x, y \in \mathbb{C}^{n}
$$



$$
\left\|x_{k}-x^{*}\right\| \leqslant
$$


with some constant $L$ (Lipschitz constant). Here $\mathbb{C}^{n}$ - the $n$-dimensional unit cube

$$
\mathbb{C}^{n}=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}
$$

Our goal is to find such $\tilde{x}:\left|f(\tilde{x})-f^{*}\right| \leq \varepsilon$ for some positive $\varepsilon$. Here $f^{*}$ is the global minima of the problem. Uniform grid with $p$ points on each dimension guarantees at least this quality:

$$
\left\|\tilde{x}-x_{*}\right\|_{\infty} \leq \frac{1}{2 p}
$$

which means, that


$$
p=\frac{L}{2 \varepsilon}
$$

Our goal is to find the $p$ for some $\varepsilon$. So, we need to sample $\left(\frac{L}{2 \varepsilon}\right)^{n}$ points, since we need to measure function in $p^{n}$ points. Doesn't look scary, but if we'll take $L=2, n=11, \varepsilon=0.01$, computations on the modern personal computers will take $31,250,000$ years.
~ 3 MAM Net.
2.1 Stopping rules

- Argument closeness:
- Function value closeness:


$$
\left\|x_{k}-x_{*}\right\|_{2}<\varepsilon
$$

$$
\left\|f_{k}-f^{*}\right\|_{2}<\varepsilon
$$

- Closeness to a critical point

$$
\left\|f^{\prime}\left(x_{k}\right)\right\|_{2}<\varepsilon
$$

But $x_{*}$ and $f^{*}=f\left(x_{*}\right)$ are unknown!
Sometimes, we can use the trick:


$$
\left\|x_{k+1}-x_{k}\right\|=\left\|x_{k+1}-x_{k}+x_{*}-x_{*}\right\| \leq\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}-x_{*}\right\| \leq 2 \varepsilon
$$

Note: it's better to use relative changing of these values, i.e. $\frac{\left\|x_{k+1}-x_{k}\right\|_{2}}{\left\|x_{k}\right\|_{2}}$.

## Example

Suppose, you are trying to estimate the vector $x_{t r u e}$ with some approximation $x_{a p p r o x}$. One can choose between two relative errors:

$$
\frac{\left\|x_{\text {approx }}-x_{\text {true }}\right\|}{\left\|x_{\text {approx }}\right\|} \frac{\left\|x_{\text {approx }}-x_{\text {true }}\right\|}{\left\|x_{\text {true }}\right\|}
$$

If both $x_{\text {approx }}$ and $x_{\text {true }}$ are close to each other, then the difference between them is small, while if your approximation is far from the truth (say, $x_{a p p r o x}=$ $10 x_{\text {true }}$ or $x_{\text {approx }}=0.01 x_{\text {true }}$ they differ drastically).

### 2.2 Local nature of the methods



Illustration of the idea of locality in black-box optimization

## 3 Contents of the chapter



Gradient descent


Newton method


Subgradient descent


Successive parabolic interpolation


Stochastic average gradient


Binary search


Natural gradient descent


ADAM: A Method for Stochastic Optimization

## WHO WILL WIN?

Conjugate gradients




Automatic differentiation


Lookahead Optimizer: $k$ steps forward, 1 step back

Golden search


## Rates of convergence

## 1 Speed of convergence

In order to compare performance of algorithms we need to define a terminology for different types of convergence. Let $r_{k}=\left\{\left\|x_{k}-x^{*}\right\|_{2}\right\}$ be a sequence in $\mathbb{R}^{n}$ that converges to zero.

### 1.1 Linear convergence

We can define the linear convergence in a two different forms:

$$
r_{k+1} \leqslant q \cdot r_{k}
$$



$$
\left\|x_{k+1}-x^{*}\right\|_{2} \leq C q^{k} \quad \text { or } \quad\left\|x_{k+1}-x^{*}\right\|_{2} \leq q\left\|x_{k}-x^{*}\right\|_{2}
$$

for all sufficiently large $k$. Here $q \in(0,1)$ and $0<C<\infty$. This means that the distance to the solution $x^{*}$ decreases at each iteration by at least a constant factor bounded away from 1. Note, that sometimes this type of convergence is also called exponential or geometric. We call the $q$ the convergence rate.

## Question

Suppose, you have two sequences with linear convergence rates $q_{1}=0.1$ and $q_{2}=0.7$, which one is faster?

## 운 Example

Let us have the following sequence:
One can immediately conclude, that we have a linear convergence with parameter $q=\frac{1}{3}$ add $C=$

## Question

Let us have the following sequence:

$$
r_{k}=\frac{4}{3^{k}}
$$

$$
q=\frac{1}{3}
$$

Will this sequence be convergent? What is the convergence rate?

$$
c=4
$$

### 1.2 Sublinear convergence

If the sequence $r_{k}$ converges to zero, but does not have linear convergence, the convergence is said to be sublinear. Sometimes we can considet the following class of sublinear convergence:

where $q<0$ and $0<C<\infty$. Note, that sublinear convergence means, that the sequence is converging slower, than any geometric progression.

### 1.3 Superlinear convergence

The convergence is said to be superlinear if:

$$
\left\|x_{k+1}-x^{*}\right\|_{2} \leq C q^{k^{2}} \quad \text { or } \quad\left\|x_{k+1}-x^{*}\right\|_{2} \leq q_{k}\left\|x_{k}-x^{*}\right\|_{2}
$$

where $q \in(0,1)$ or $0<C_{k}<\infty, C_{k} \rightarrow 0$. Note, that superlinear convergence is also linear convergence (one can even say, that it is linear convergence with $q=0$ ).

### 1.4 Quadratic convergence

$$
\left\|x_{k+1}-x^{*}\right\|_{2} \leq C q^{2^{k}} \quad \text { or } \quad\left\|x_{k+1}-x^{*}\right\|_{2} \leq C\left\|x_{k}-x^{*}\right\|_{2}^{2}
$$

where $q \in(0,1)$ and $0<C<\infty$.


Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton's method converges quadratically under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problem is ill-conditioned the convergence constant $q$ is close to 1 .

2 How to determine convergence type
2.1 Root test

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, a

$$
q=1 \text { If } 0 \leq q<1 \text {, then }\left\{r_{k}\right\}_{k=m}^{\infty} \text { has linear convergence with constant } q .
$$

- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k-m}^{\infty}$ has superlinear convergence.
- If $q=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.
- The case $q>1$ is impossible.
2.2 Ratio test Tee отноменеий

Let $\left\{r_{k}\right\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- If there exists $q$ and $0 \leq q<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$, has linear convergence with constant $q$.
- In particular, if $q=0$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has superlinear convergence.

- If $q$ does not exist, but $q=\lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r k}<1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding $q$.

If $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}=1$, then $\left\{r_{k}\right\}_{k=m}^{\infty}$ has sublinear convergence.

- The case $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}>1$ is impossible.
- In all other cases (i.e., when $\lim _{k \rightarrow \infty} \inf _{k} \frac{r_{k+1}}{r_{k}}<1 \leq \lim _{k \rightarrow \infty} \sup _{k} \frac{r_{k+1}}{r_{k}}$ ) we cannot claim anything concrete about the convergence rate $\left\{r_{k}\right\}_{k=m}^{\infty}$.

Example
Ha gout:
Let us have the following sequence:

$$
\begin{aligned}
& \text { fence: } \quad \text { root } \frac{1}{x} \quad r \text { rAtio: }
\end{aligned}
$$

## 푤 Example

Let us have the following sequence:

Determine the convergence


## Example

Let us have the following sequence:

$$
r_{k}=\frac{1}{k^{q}}, q>1
$$

Determine the convergence

## 퓰 Try to use root test here

Let us have the following sequence:

$$
r_{k}=\frac{1}{k^{k}}
$$

Determine the convergence

## 3 References

- Code for convergence plots - Open In Cola
- CMC seminars (ru)
- Numerical Optimization by J.Nocedal and S.J.Wright

