
1 Problem
Suppose we need to solve the following problem:

Such problems typically arise in machine learning, when you need to find optimal hyperparameters of an ML model (i.e. train a neural
network). You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where could be dozens of
billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms. That is why

it would be beneficial to be able to calculate the gradient vector . Typically, first-order methods perform much

better in huge-scale optimization, while second-order methods require too much memory.

2 Finite di!erences
The naive approach to get approximate values of gradients is Finite di!erences approach. For each coordinate, one can calculate the partial
derivative approximation:

If the time needed for one calculation of is , what is the time needed for calculating with this approach?

, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between
accuracy and stability.

There is an algorithm to compute in operations.

3 Forward mode automatic di!erentiation
To dive deep into the idea of automatic di!erentiation we will consider a simple function for calculating derivatives:

Let’s draw a computational graph of this function:

Let’s go from the beginning of the graph to the end and calculate the derivative :

L(w) →
w∈Rd
min

w

d

∇ L =w , … ,(∂w1

∂L
∂wd

∂L)T

(w) ≈
∂wk

∂L
, e =

ε

L(w + εe) − L(w)k
k (0, … , , … , 0)

k

1

Question

L(w) T ∇ Lw

Answer

2dT

Theorem

∇ Lw O(T) 1

L(w , w) =1 2 w log w +2 1 w log w2 1

Illustration of computation graph of primitive arithmetic operations for the function L(w , w)1 2

∂w1

∂L

  

Abromamucro quepepenyuposare

E-mano

↓ ↓
k-bin Jazuen . bektop

O
↑

I 2d .T6

-
L :R-R

-> FORWARD-

Step Function Derivative Scheme

1

2

3

4

5

Make the same computations for

Step Function Derivative Scheme

1

2

w =1 w , w =1 2 w2 =
∂w1

∂w1 1, =
∂w1

∂w2 0

v =1 log w1

∂w1

∂v1 =
∂w1

∂v1

∂w1

∂w1

= 1
w1

1

v =2 w v2 1

∂w1

∂v2 = +
∂v1

∂v2

∂w1

∂v1

∂w2

∂v2

∂w1

∂w2

= w + v2 ∂w1

∂v1
1 ∂w1

∂w2

v =3 v2

∂w1

∂v3 =
∂v2

∂v3

∂w1

∂v2

=
2 v2

1

∂w1

∂v2

L = v +2 v3

∂w1

∂L
= +

∂v2

∂L

∂w1

∂v2

∂v3

∂L

∂w1

∂v3

= 1 + 1
∂w1

∂v2

∂w1

∂v3

Question

∂w2

∂L

Solution

w =1 w , w =1 2 w2 =
∂w2

∂w1 0, =
∂w2

∂w2 1

v =1 log w1

∂w2

∂v1
=

∂w2

∂v1

∂w2

∂w2

= 0 ⋅ 1

∂ ∂ ∂ ∂ ∂

·D : ww-

/
upu

w
(empeg. E OWaVe= Vz(V, mentAOXPAHUM⑧

3

4

5

Suppose, we have a computational graph . Our goal is to calculate the derivative of the output of this graph with respect to some input variable

, i.e. . This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

For :
Compute as a function of its parents (inputs) :

Compute the derivative using the forward chain rule:

Note, that this approach does not require storing all intermediate computations, but one can see, that for calculating the derivative we need

 operations. This means, that for the whole gradient, we need operations, which is the same as for finite di!erences, but we do not
have stability issues, or inaccuracies now (the formulas above are exact).

v =2 w v2 1

∂w2

∂v2 = +
∂v1

∂v2

∂w2

∂v1

∂w2

∂v2

∂w2

∂w2

= w + v2 ∂w2

∂v1
1 ∂w2

∂w2

v =3 v2

∂w2

∂v3 =
∂v2

∂v3

∂w2

∂v2

=
2 v2

1

∂w2

∂v2

L = v +2 v3

∂w2

∂L
= +

∂v2

∂L

∂w2

∂v2

∂v3

∂L

∂w2

∂v3

= 1 + 1
∂w2

∂v2

∂w2

∂v3

Forward mode automatic di!erentiation algorithm

v , i ∈i [1; N]

wk ∂wk

∂vN

=vi ∂wk

∂vi

Illustration of forward chain rule to calculate the derivative of the function with respect to .L wk

i = 1, … , N

vi x , … , x1 ti

v =i v (x , … , x)i 1 ti

vi

=vi

j=1

∑
ti

∂xj

∂vi

∂wk

∂xj

∂wk

∂L

O(T) dO(T)

4 Backward mode automatic di!erentiation
We will consider the same function

with a computational graph:

Assume, that we have some values of the parameters and we have already performed a forward pass (i.e. single propagation through the
computational graph from le" to right). Suppose, also, that we somehow saved all intermediate values of . Let’s go from the end of the graph to

the beginning and calculate the derivatives :

Step Derivative Scheme

1

2

3

4

5

L(w , w) =1 2 w log w +2 1 w log w2 1

Illustration of computation graph of primitive arithmetic operations for the function L(w , w)1 2

w , w1 2

vi

,
∂w1

∂L

∂w1

∂L

=
∂L

∂L
1

∂v3

∂L
=

∂L

∂L

∂v3

∂L

= 1
∂L

∂L

∂v2

∂L
= +

∂v3

∂L

∂v2

∂v3

∂L

∂L

∂v2

∂L

= + 1
∂v3

∂L

2 v2

1

∂L

∂L

∂v1

∂L
=

∂v2

∂L

∂v1

∂v2

= w
∂v2

∂L
2

∂L ∂L ∂v ∂L ∂L ∂v

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient . Is it a free lunch? What is the cost of
acceleration?

Note, that for using the reverse mode AD you need to store all intermediate computations from the forward pass. This problem could be somehow mitigated
with the gradient checkpointing approach, which involves necessary recomputations of some intermediate values. This could significantly reduce the
memory footprint of the large machine-learning model.

Suppose, we have a computational graph . Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable

, i.e. . This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to

the origin, that is why we can introduce the notation:

FORWARD PASS
For :

Compute and store the values of as a function of its parents (inputs)

BACKWARD PASS
For :

Compute the derivative using the backward chain rule and information from all of its children (outputs) ():

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are

needed to compute the jacobian

∂w1

∂L
=

∂v1

∂L

∂w1

∂v1

=
∂v1

∂L

w1

1
∂w2

∂L
=

∂v2

∂L

∂w2

∂v2

= v
∂v1

∂L
1

Question

∇ Lw

Answer

Reverse mode automatic di!erentiation algorithm

v , i ∈i [1; N] w

∇ v =w N , … ,(∂w1

∂vN

∂wd

∂vN)T

=vi =
∂vi

∂L

∂vi

∂vN

Illustration of reverse chain rule to calculate the derivative of the function with respect to the node .L vi

i = 1, … , N

vi

i = N , … , 1
vi x , … , x1 ti

=vi =
∂vi

∂L

j=1

∑
ti

∂xj

∂L

∂vi

∂xj

Example

J = {
∂wj

∂Li }
i,j

Note, that the reverse mode computational time is proportional to the number of outputs here, while the forward mode works proportionally to the number of
inputs there. This is why it would be a good idea to consider the forward mode AD.

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are

needed to compute the jacobian . Note, that is an arbitrary computational graph

Which mode would you choose for calculating gradients there?

This graph nicely illustrates the idea of choice between the modes. The dimension is fixed and the graph presents the time needed for Jacobian
calculation w.r.t. for

n = 100
x f(x) = Ax

Question

J = {
∂wj

∂Li }
i,j

G

It is generally impossible to say it without some knowledge about the specific structure of the graph . Note, that there are also plenty of advanced
approaches to mix forward and reverse mode AD, based on the specific structure.

FORWARD
 typically we have a batch of data here as an input.

For :
. Note, that practically speaking the data has dimension , where is the batch size (for the single data point).

While the weight matrix of a layer has a shape , where is the dimension of an inner representation of the data.

 - calculate the loss function.

BACKWARD

For :

Which mode would you choose for calculating gradients there?

Answer

G

G

Feedforward Architecture

Feedforward neural network architecture

v =0 x x

k = 1, … , t − 1, t

v =k σ(v w)k−1 k x ∈ Rb×d b b = 1
wk k n ×k−1 nk nk

L = L(v)t

v =t+1 L, =
∂L

∂L
1

k = t, t − 1, … , 1

=

b×nk

∂vk

∂L

b×nk+1

∂vk+1

∂L

n ×nk+1 k

∂vk

∂vk+1

=

b×n ⋅nk−1 k

∂wk

∂L
⋅

b×nk+1

∂vk+1

∂L

n ×n ⋅nk+1 k−1 k

∂wk

∂vk+1

Gradient propagation through the linear least squares

Suppose, we have an invertible matrix and a vector , the vector is the solution of the linear system , namely one can write down an analytical

solution , in this example we will show, that computing all derivatives , i.e. the backward pass, costs approximately the same as the

forward pass.
It is known, that the di!erential of the function does not depend on the parametrization:

Given the linear system, we have:

The straightforward substitution gives us:

Therefore:

It is interesting, that the most computationally intensive part here is the matrix inverse, which is the same as for the forward pass. Sometimes it is even
possible to store the result itself, which makes the backward pass even cheaper.

Suppose, we have the rectangular matrix , which has a singular value decomposition:

1. Similarly to the previous example:

2. Note, that . But also , which actually involves, that the matrix is antisymmetric:

The same logic could be applied to the matrix and

 could be found as a solution of linear system

BEIR"

87

aL
อิวะ

RER"
Ax=b

aL

x

A b x Ax = b

x = A b−1 , ,
∂A

∂L

∂b

∂L

∂x

∂L

dL = , dx =⟨
∂x

∂L ⟩ , dA +⟨
∂A

∂L ⟩ , db⟨
∂b

∂L ⟩

Ax

dAx + Adx = db

= b

→ dx = A (db − dAx)−1

, A (db − dAx) =⟨
∂x

∂L −1 ⟩ , dA +⟨
∂A

∂L ⟩ , db⟨
∂b

∂L ⟩

−A x , dA +⟨ −T

∂x

∂L T ⟩ A , db =⟨ −T

∂x

∂L ⟩ , dA +⟨
∂A

∂L ⟩ , db⟨
∂b

∂L ⟩

=
∂A

∂L
−A x =−T

∂x

∂L T

∂b

∂L
A−T

∂x

∂L

Gradient propagation through the SVD

W ∈ Rm×n

W = UΣV , U U =T T I, V V =T I, Σ = diag(σ , … , σ)1 min(m,n)

W

dW

U dWVT

U dWVT

= UΣV T

= dUΣV + UdΣV + UΣdVT T T

= U dUΣV V + U UdΣV V + U UΣdV VT T T T T T

= U dUΣ + dΣ + ΣdV VT T

U U =T I → dU U +T U dU =T 0 dU U =T (U dU)T T U dUT

(U dU) +T T U dU =T 0 → diag(U dU) =T (0, … , 0)

V

3. At the same time, the matrix is diagonal, which means (look at the 1.) that

Here on both sides, we have diagonal matrices.
4. Now, we can decompose the di!erential of the loss function as a function of - such problems arise in ML problems, where we need to restrict the matrix

rank:

As soon as we have diagonal matrices inside the product, the trace of the diagonal part of the matrix will be equal to the trace of the whole matrix:

5. Finally, using another parametrization of the di!erential

This nice result allows us to connect the gradients and .

4.1 What automatic di!erentiation (AD) is NOT:

AD is not a finite di!erences
AD is not a symbolic derivative
AD is not just the chain rule
AD is not just backpropagation
AD (reverse mode) is time-e!icient and numerically stable
AD (reverse mode) is memory ine!icient (you need to store all intermediate computations from the forward pass). :::

diag(dV V) =T (0, … , 0)

dΣ

diag(U dWV) =T dΣ

Σ

dL = , dΣ⟨
∂Σ
∂L ⟩

= , diag(U dWV)⟨
∂Σ
∂L T ⟩

= tr diag(U dWV)(
∂Σ
∂L

T
T)

dL = tr diag(U dWV)(
∂Σ
∂L

T
T)

= tr U dWV(
∂Σ
∂L

T
T)

= , U dWV⟨
∂Σ
∂L T ⟩

= U V , dW⟨
∂Σ
∂L T ⟩

U V , dW =⟨
∂Σ
∂L T ⟩ , dW⟨

∂W

∂L ⟩

=
∂W

∂L
U V ,

∂Σ
∂L T

∂W

∂L

∂Σ
∂L

5 Important stories from matrix calculus
We will illustrate some important matrix calculus facts for specific cases

5.1 Univariate chain rule

Suppose, we have the following functions and . Then

5.2 Multivariate chain rule

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of will be:

where matrix is the jacobian of the . Hence, we could write it in a vector way:

5.3 Backpropagation

Di!erent approaches for taking derivatives

R : R → R, L : R → R W ∈ R

=
∂W

∂R

∂L

∂R

∂W

∂L

f(x (t), x (t)) =
∂t

∂
1 2 +

∂x1

∂f

∂t

∂x1

∂x2

∂f

∂t

∂x2

f : R →n R

f(x (t), … , x (t)) =
∂t

∂
1 n +

∂x1

∂f

∂t

∂x1 … +
∂xn

∂f

∂t

∂xn

f : R →n Rm j f

f (x (t), … , x (t)) =
∂t

∂
j 1 n =

i=1

∑
n

∂xi

∂fj

∂t

∂xi
J ,

i=1

∑
n

ji ∂t

∂xi

J ∈ Rm×n f

=
∂t

∂f
J ⟺

∂t

∂x
=(

∂t

∂f)⊤

J(
∂t

∂x)⊤
⊤

Backpropagation is a specific application of reverse-mode automatic di!erentiation within neural networks. It is the standard algorithm for
computing gradients in neural networks, especially for training with stochastic gradient descent. Here’s how it works:

Perform a forward pass through the network to compute activations and outputs.
Calculate the loss function at the output, which measures the di!erence between the network prediction and the actual target values.
Commence the backward pass by computing the gradient of the loss with respect to the network’s outputs.
Propagate these gradients back through the network, layer by layer, using the chain rule to calculate the gradients of the loss with respect to
each weight and bias.
The critical point of backpropagation is that it e!iciently calculates the gradient of a complex, multilayered function by decomposing it into
simpler derivative calculations. This aspect makes the update of a large number of parameters in deep networks computationally feasible.

5.4 Jacobian vector product

The power of automatic di!erentiation is encapsulated in the computation of the Jacobian-vector product. Instead of calculating the entire
Jacobian matrix, which is computationally expensive and o"en unnecessary, AD computes the product of the Jacobian and a vector directly. This
is crucial for gradients in neural networks where the Jacobian may be very large, but the end goal is the product of this Jacobian with the gradient
of the loss with respect to the outputs (vector). The reason why it works so fast in practice is that the Jacobian of the operations is already
developed e!ectively in automatic di!erentiation frameworks. Typically, we even do not construct or store the full Jacobian, doing matvec
directly instead. Note, for some functions (for example, any element-wise function of the input vector) matvec costs linear time, instead of
quadratic and requires no additional memory to store a Jacobian.

See the examples of Vector-Jacobian Products from the autodidact library:

5.5 Hessian vector product

Interestingly, a similar idea could be used to compute Hessian-vector products, which is essential for second-order optimization or conjugate
gradient methods. For a scalar-valued function with continuous second derivatives (so that the Hessian matrix is symmetric), the
Hessian at a point is written as . A Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions or billions in the context of neural networks, then that
might be impossible to store. Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an e!icient Hessian-vector
product function. We just have to use the identity

where is a new vector-valued function that dots the gradient of at with the vector . Notice that we’re only ever
di!erentiating scalar-valued functions of vector-valued arguments, which is exactly where we know grad is e!icient.

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) =z Jy

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),
 lambda g, ans, x, y : unbroadcast(y, g))
defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),
 lambda g, ans, x, y : unbroadcast(y, x * g))
defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),
 lambda g, ans, x, y : unbroadcast(y, -g))
defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),
 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))
defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),
 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

f : R →n R
x ∈ Rn ∂ f(x)2

v ↦ ∂ f(x) ⋅2 v

v ∈ Rn

n

∂ f(x)v =2 ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f x v

import jax.numpy as jnp

6 Code
Open In Colab{: .btn }

7 Materials
Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6
CSC321 Lecture 10
Why you should understand backpropagation :)
JAX autodi! cookbook
Materials from CS207: Systems Development for Computational Science course with very intuitive explanation.
Great lecture on AD from Dmitry Kropotov (in Russian).

1. Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, 1970.↩︎

def hvp(f, x, v):
 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Footnotes

