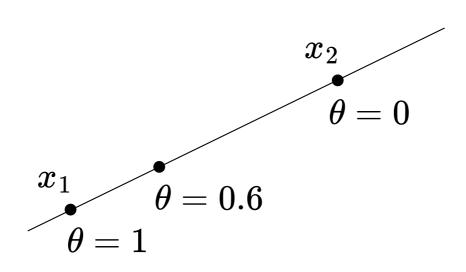


Line

Suppose x_1, x_2 are two points in \mathbb{R}^n . Then the line passing through them is defined as follows:

$$x= heta x_1+(1- heta)x_2, heta\in\mathbb{R}$$



Affine set

The set A is called **affine** if for any x_1, x_2 from A the line passing through them also lies in A, i.e.

$$orall heta \in \mathbb{R}, orall x_1, x_2 \in A: heta x_1 + (1- heta) x_2 \in A$$

関 EXAMPLE

 \mathbb{R}^n is an affine set. The set of solutions $\{x \mid \mathbf{A}x = \mathbf{b}\}$ is also an affine set.

Related definitions

Affine combinationTOYKA
 $\sum R$ Let we have $x_1, x_2, \ldots, x_k \in S$, then the point $\theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$ is called
affine combination of x_1, x_2, \ldots, x_k if $\sum_{i=1}^k \theta_i = 1.$

Affine hull

The set of all affine combinations of points in set S is called the affine hull of S:

- The set ${f aff}(S)$ is the smallest affine set containing S.

Certainly, let's translate the last two subchapters and then provide an example for the affine set definition as you requested:

Interior

The interior of the set ${\boldsymbol{S}}$ is defined as the following set:

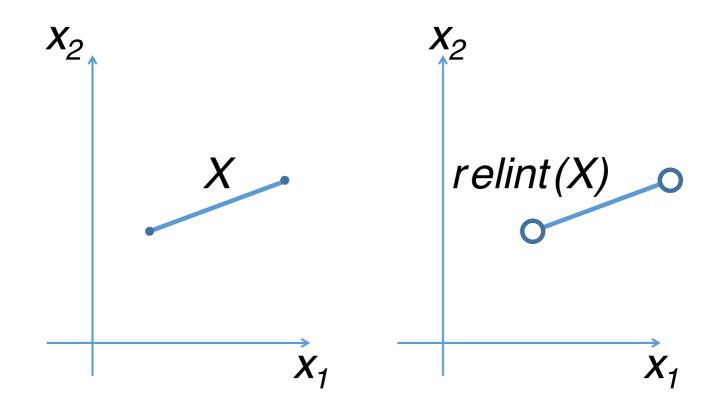
$$\mathbf{int}(S) = \{\mathbf{x} \in S \mid \exists arepsilon > 0, \; B(\mathbf{x},arepsilon) \subset S\}$$

where $B(\mathbf{x}, \varepsilon) = \mathbf{x} + \varepsilon B$ is the ball centered at point \mathbf{x} with radius ε .

Relative Interior

The relative interior of the set ${\boldsymbol{S}}$ is defined as the following set:

 $\mathbf{relint}(S) = \{\mathbf{x} \in S \mid \exists arepsilon > 0, \; B(\mathbf{x},arepsilon) \cap \mathbf{aff}(S) \subseteq S\}$



EXAMPLE

Any non-empty convex set $S \subseteq \mathbb{R}^n$ has a non-empty relative interior $\mathbf{relint}(S)$.

GUESTION

Give any example of a set $S \subseteq \mathbb{R}^n$, which has an empty interior, but at the same time has a non-empty relative interior $\mathbf{relint}(S)$.

Cone

A non-empty set S is called cone, if:

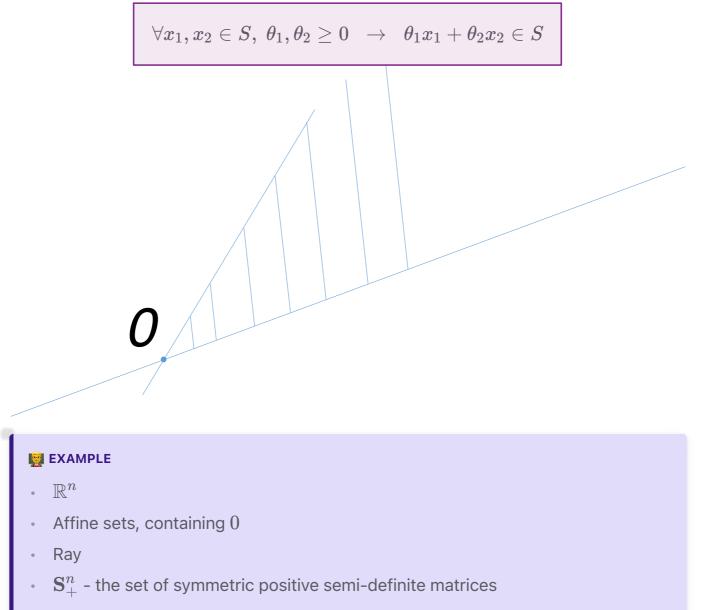
$$orall x\in S,\; heta\geq 0\;\;
ightarrow\; heta x\in S$$

min

x, y, z

Convex cone

The set ${\boldsymbol{S}}$ is called convex cone, if:



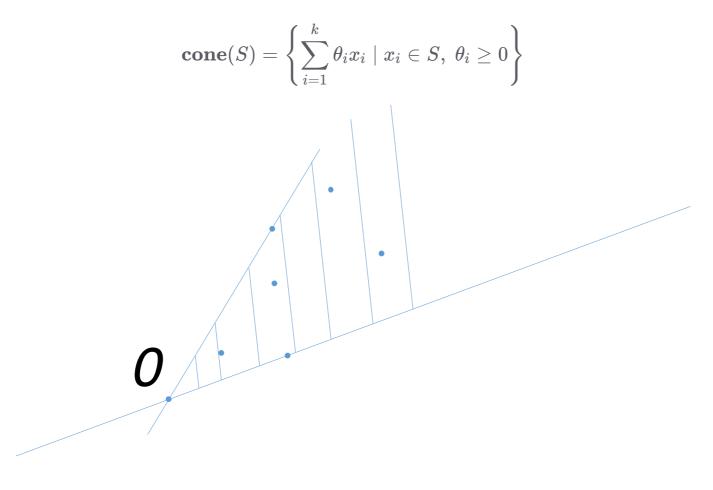
Related definitions

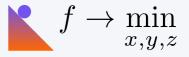
Conic combination

Let we have $x_1, x_2, \ldots, x_k \in S$, then the point $\theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$ is called conic combination of x_1, x_2, \ldots, x_k if $\theta_i \ge 0$.

Conic hull

The set of all conic combinations of points in set S is called the conic hull of S:

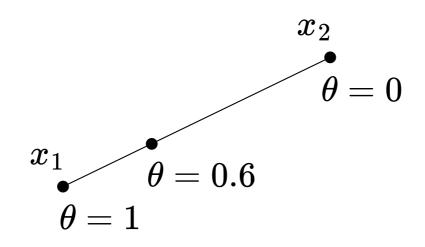




Line segment

Suppose x_1, x_2 are two points in \mathbb{R}^n . Then the line segment between them is defined as follows:

$$x= heta x_1+(1- heta)x_2, \ heta\in [0,1]$$



Convex set

The set S is called **convex** if for any x_1, x_2 from S the line segment between them also lies in S, i.e.

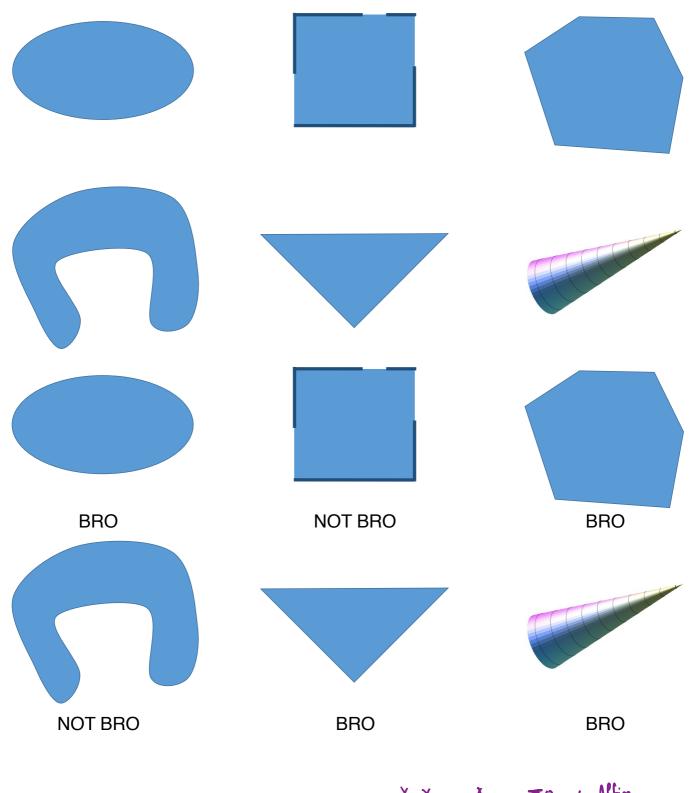
$$egin{aligned} &orall heta \in [0,1], \ orall x_1, x_2 \in S: \ & heta x_1 + (1- heta) x_2 \in S \end{aligned}$$

👰 EXAMPLE

Empty set and a set from a single vector are convex by definition.

🕎 EXAMPLE

Any affine set, a ray, a line segment - they all are convex sets.



Related definitions

Convex combination

DNS $X_{i}, X_{2}, \dots, X_{K} = \mathbb{Z} \Theta_{i} = 1 - Affire$ $X = \sum_{i=1}^{N} \Theta_{i} X_{i} = \mathbb{Q}_{i} \ge 0 - Core$ $\sum_{i=1}^{N} \Theta_{i} \ge 0$ $\Theta_{i} \ge 0$

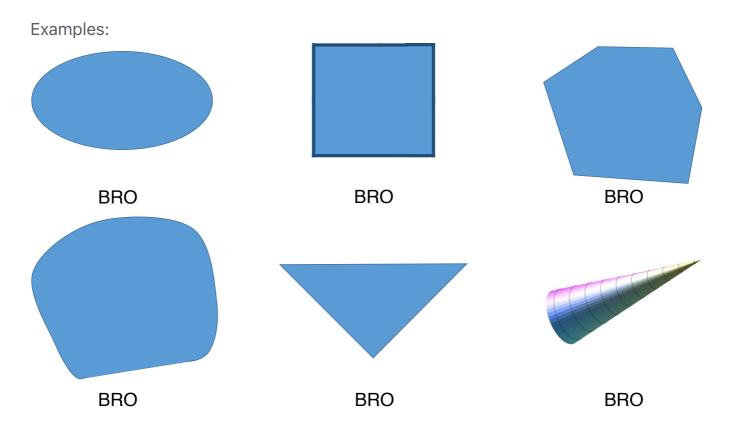
Let $x_1,x_2,\ldots,x_k\in S$, then the point $heta_1x_1+ heta_2x_2+\ldots+ heta_kx_k$ is called the convex combination of points x_1,x_2,\ldots,x_k if $\sum\limits_{i=1}^k heta_i=1,\; heta_i\geq 0.$

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$\mathbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \sum_{i=1}^k heta_i = 1, \; heta_i \geq 0
ight\}$$

- The set $\mathbf{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S = \mathbf{conv}(S)$.



Minkowski addition

The Minkowski sum of two sets of vectors S_1 and S_2 in Euclidean space is formed by adding each vector in S_1 to each vector in S_2 :

$$S_1 + S_2 = \{ \mathbf{s_1} + \mathbf{s_2} \, | \, \mathbf{s_1} \in S_1, \, \mathbf{s_2} \in S_2 \}$$

nounap 1:

Similarly, one can define linear combination of the sets.

🙀 EXAMPLE

We will work in the \mathbb{R}^2 space. Let's define:

$$S_1:=\{x\in \mathbb{R}^2: x_1^2+x_2^2\leq 1\}$$

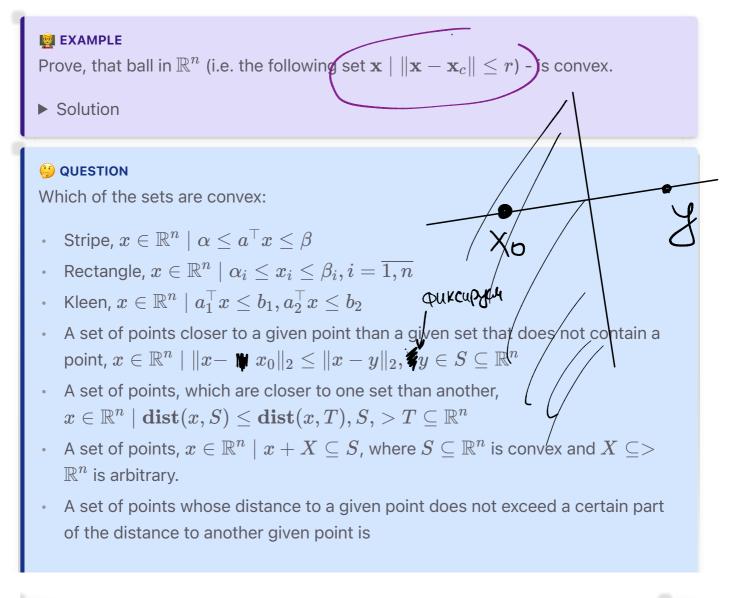
This is a unit circle centered at the origin. And:



- Show that S is derived from simple convex sets using operations that preserve convexity.

By definition

 $x_1,x_2\in S,\; 0\leq heta\leq 1 \;\;
ightarrow \;\; heta x_1+(1- heta)x_2\in S$



Npump: { ||x-x=11 < RG S - Beingeno? Pemerne; 1|X1-X2115R ||X2-X2115R 1) Bozbuilder X, ES, X2ES $\chi = \Theta \chi_1 + (1 - \Theta) \chi_2 \quad \forall \Theta \in [0, S]$ 2) Nocmpound $||X - X_c|| \leq \mathbb{R}$ $\|\partial x_1 + (1 - 0) x_2 - x_c\| \in \mathbb{R}$ $\|\Theta X_1 + (1-\Theta) X_2 - \Theta X_c - (1-\Theta) X_c\| \leq R$ $\|\Theta(x_1-x_2)+(1-U)(x_2-x_2)\| \leq R$ $(\partial ||x_1 - x_2|| + (1 - G) ||x_2 - x_2|| \le R$ $0R+(1-0)R \leq R$

S_= fAES": VXER"-> xTAX>01 BUNY KNO? ∀xeRn xTS,x≥0 $S_1 \in S_+^n$ $S_a \in S_t^n$ \sqrt{S} $\times > 0$ S_2 $S_{\theta} = \Theta S_{,+} (1 - \theta)$ $Z^T S_{\theta} Z = \theta \cdot z^T S_{Z^T}$ $Z^T S_a Z$ $+(1-\theta)$ Normer SESI tr(S) BUNYKNO? ≥ 100500 atx 5 D a'x= b $\langle X, I \rangle = tr$ Cix≥D

 $x\in \mathbb{R}^n\mid \|x-a\|_2\leq heta\|xb\|_2, a,b\in \mathbb{R}^n, 0\leq 1$

Preserving convexity

The linear combination of convex sets is convex

Let there be 2 convex sets S_x, S_y , let the set

$$S = \{ s \mid s = c_1 x + c_2 y, \; x \in S_x, \; y \in S_y, \; c_1, c_2 \in \mathbb{R} \}$$

Take two points from $S: s_1 = c_1x_1 + c_2y_1, s_2 = c_1x_2 + c_2y_2$ and prove that the segment between them $\theta s_1 + (1 - \theta)s_2, \theta \in [0, 1]$ also belongs to S

$$egin{aligned} & heta s_1 + (1- heta) s_2 \ & heta (c_1 x_1 + c_2 y_1) + (1- heta) (c_1 x_2 + c_2 y_2) \ & heta (dx_1 + (1- heta) x_2) + c_2 (heta y_1 + (1- heta) y_2) \ & heta (c_1 x + c_2 y \in S) \end{aligned}$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex

 $S\subseteq \mathbb{R}^n ext{ convex } o ext{ } f(S) = \{f(x) \mid x\in S\} ext{ convex } (f(x)=\mathbf{A}x+\mathbf{b})$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\{x \mid x_1A_1 + \ldots + x_mA_m \leq B\}$. Here $A_i, B \in \mathbf{S}^p$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

 $S\subseteq \mathbb{R}^m ext{ convex } o \ f^{-1}(S) = \{x\in \mathbb{R}^n \mid f(x)\in S\} \ ext{ convex } \ (f(x)=\mathbf{A}x+\mathbf{b})$

🛃 EXAMPLE

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}(x = a_i) = p_i$, where $i = 1, > \ldots, n$, and $a_1 < \ldots < a_n$. It is said that the probability

vector of outcomes of $p \in \mathbb{R}^n$ belongs to the >probabilistic simplex, i.e. $P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \ge 0\}.$ Determine if the following sets of p are convex: $\mathbb{P}(x > lpha) \leq eta$ $\mathbb{E}|x^{201}| \leq lpha \mathbb{E}|x|$ $\sum_{i=1}^{n} P_i =$ $\mathbb{E}|x^2| \geq lpha \mathbb{V} x \geq lpha$ $P_i \ge 0$ 1 Solution $\Delta^n = per n$ EX < 100500 0 2 BOINYKAU $\sum p_i \alpha_i \leq |00500|$ i=1 BUNYKNO $P(X > d) \leq$ $SPi \leq B$ [-] $\mathbb{E}\left[\chi\right] \stackrel{\text{20}}{=} \sum_{i=1}^{n} P_i \left[\alpha_i\right]^{20}$ dip $\mathbb{V} X = \mathbb{E} X^{2} (\mathbb{E} X)^{2} =$ = $Za_i^2 P_i - (Za_i P_i)$