Line

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{n}. Then the line passing through them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in \mathbb{R}
$$

Affine set

The set A is called affine if for any x_{1}, x_{2} from A the line passing through them also lies in A, i.e.

$$
\forall \theta \in \mathbb{R}, \forall x_{1}, x_{2} \in A: \theta x_{1}+(1-\theta) x_{2} \in A
$$

뗠 EXAMPLE

\mathbb{R}^{n} is an affine set. The set of solutions $\{x \mid \mathbf{A} x=\mathbf{b}\}$ is also an affine set.

Related definitions

Affine combination

Let we have $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the point $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called affine combination of $x_{1}, x_{2}, \ldots, x_{k}$ if $\sum_{i=1}^{k} \theta_{i}=1$.

Affine hull

The set of all affine combinations of points in set S is called the affine hull of S :

$$
\operatorname{aff}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1\right\}
$$

- The set $\operatorname{aff}(S)$ is the smallest affine set containing S.

Certainly, let's translate the last two subchapters and then provide an example for the affine set definition as you requested:

Interior

The interior of the set S is defined as the following set:

$$
\operatorname{int}(S)=\{\mathbf{x} \in S \mid \exists \varepsilon>0, B(\mathbf{x}, \varepsilon) \subset S\}
$$

where $B(\mathbf{x}, \varepsilon)=\mathbf{x}+\varepsilon B$ is the ball centered at point \mathbf{x} with radius ε.

Relative Interior

The relative interior of the set S is defined as the following set:

$$
\operatorname{relint}(S)=\{\mathbf{x} \in S \mid \exists \varepsilon>0, B(\mathbf{x}, \varepsilon) \cap \operatorname{aff}(S) \subseteq S\}
$$

엔 EXAMPLE

Any non-empty convex set $S \subseteq \mathbb{R}^{n}$ has a non-empty relative interior relint (S).

(i) QUESTION

Give any example of a set $S \subseteq \mathbb{R}^{n}$, which has an empty interior, but at the same time has a non-empty relative interior relint (S).

Cone

A non-empty set S is called cone, if:

$$
\forall x \in S, \theta \geq 0 \quad \rightarrow \quad \theta x \in S
$$

Convex cone

The set S is called convex cone, if:

$$
\forall x_{1}, x_{2} \in S, \theta_{1}, \theta_{2} \geq 0 \quad \rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in S
$$

폰 EXAMPLE

- \mathbb{R}^{n}
- Affine sets, containing 0
- Ray
- \mathbf{S}_{+}^{n} - the set of symmetric positive semi-definite matrices

Related definitions

Conic combination

Let we have $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the poin $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called conic combination of $x_{1}, x_{2}, \ldots, x_{k}$ if $\theta_{i} \geq 0$.

Conic hull

The set of all conic combinations of points in set S is called the conic hull of S :

$$
\operatorname{cone}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \theta_{i} \geq 0\right\}
$$

Line segment

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{n}. Then the line segment between them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in[0,1]
$$

x_{2}

Convex set

The set S is called convex if for any x_{1}, x_{2} from S the line segment between them also lies in S, i.e.

$$
\begin{gathered}
\forall \theta \in[0,1], \forall x_{1}, x_{2} \in S: \\
\theta x_{1}+(1-\theta) x_{2} \in S
\end{gathered}
$$

돌 EXAMPLE

Empty set and a set from a single vector are convex by definition.

EXAMPLE

Any affine set, a ray, a line segment - they all are convex sets.

BRO

NOT BRO

NOT BRO

BRO

BRO

BRO

Related definitions

Convex combination

Let $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the point $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called the convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$ if $\sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0$.

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0\right\}
$$

- The set $\operatorname{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S=\boldsymbol{\operatorname { c o n v }}(S)$.

Examples:

BRO

BRO

BRO

BRO

BRO

BRO

Minkowski addition

The Minkowski sum of two sets of vectors S_{1} and S_{2} in Euclidean space is formed by adding each vector in S_{1} to each vector in S_{2} :

$$
S_{1}+S_{2}=\left\{\mathbf{s}_{\mathbf{1}}+\mathbf{s}_{\mathbf{2}} \mid \mathbf{s}_{\mathbf{1}} \in S_{1}, \mathbf{s}_{\mathbf{2}} \in S_{2}\right\}
$$

Similarly, one can define linear combination of the sets.

펼 EXAMPLE

We will work in the \mathbb{R}^{2} space. Let's define:

$$
S_{1}:=\left\{x \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

This is a unit circle centered at the origin. And:

$$
S_{2}:=\left\{x \in \mathbb{R}^{2}:-1 \leq x_{1} \leq 2,-3\right.
$$

This represents a rectangle. The sum of the sets S_{1} and S2 vyi4t fornof an ennafged rectangle S_{2} with rounded corners. The $>$ resulting set

Finding convexity

In practice it is very important to understand whether a specifle setis qonve, or not.
Two approaches are used for this depending on the contex

- By definition.
- Show that S is derived from simple convex sets using operations that preserve convexity.

By definition

$$
x_{1}, x_{2} \in S, 0 \leq \theta \leq 1 \quad \rightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in S
$$

분 EXAMPLE

Prove, that ball in \mathbb{R}^{n} (i.e. the following set $\left.\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\| \leq r\right)$ - s convex.
Solution

\% QUESTION

Which of the sets are convex:

- Stripe, $x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta$
- Rectangle, $x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}$
- Kleen, $x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}$
- A set of points closer to a given point than a gilven set tha does not co ptain a point, $x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}$, $y \in S \subseteq \mathbb{R}^{n}$
- A set of points, which are closer to one set than another, $x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S,>T \subseteq \mathbb{R}^{n}$
- A set of points, $x \in \mathbb{R}^{n} \mid x+X \subseteq S$, where $S \subseteq \mathbb{R}^{n}$ is convex and $X \subseteq>$ \mathbb{R}^{n} is arbitrary.
- A set of points whose distance to a given point does not exceed a certain part of the distance to another given point is

Пpurep; $\left\{\left\|x-x_{c}\right\| \leqslant R\right\} S$ - Зыпyman?
Pemerve:

1) Bozs rien $x_{1} \in S, x_{2} \in S$:

$$
\begin{aligned}
& \left\|x_{1}-x_{2}\right\| \leq R \\
& \left\|x_{2}-x_{2}\right\| \leq R
\end{aligned}
$$

2) Mocmpour $x=\theta x_{1}+(1-\theta) x_{2} \quad \forall \theta \in[0,1]$

$$
\begin{aligned}
& \left\|x-x_{c}\right\| \leqslant R \\
& \left\|\theta x_{1}+(1-\theta) x_{2}-x_{c}\right\| \leqslant R \\
& \|\left(\theta x_{1}+(1-\theta) x_{2}-\theta x_{c}-(1-\theta) x_{c} \| \leqslant R\right. \\
& \left\|\theta\left(x_{1}-x_{c}\right)+(1-\theta)\left(x_{2}-x_{c}\right)\right\| \leqslant R \\
& \theta \cdot\left\|x_{1}-x_{c}\right\|+(1-\theta)\left\|x_{2}-x_{c}\right\| \leqslant R \\
& \|_{R} \\
& R \\
& \theta R+(1-\theta) R \leqslant R \\
& R \leqslant R
\end{aligned}
$$

$$
S_{+}^{n}=\left\{A \in \mathbb{S}^{n} \quad ; \forall x \in \mathbb{R}^{n} \rightarrow x^{\top} A x \geqslant 0\right\}
$$ Bony kno?

1)

$$
\begin{array}{lr}
& \forall x \in \mathbb{R}^{n} \\
S_{1} \in S_{+}^{n} & \top^{\top} S_{1} x \geq 0 \\
S_{2} \in S_{+}^{n} & x^{\top} S_{2} x \geqslant 0
\end{array}
$$

2)

$$
\begin{aligned}
S_{\theta}=\theta S_{1} & +(1-\theta) S_{2} \\
z^{\top} S_{\theta} z & =\theta \cdot z^{\top} S_{z+} \\
& +(1-\theta) z^{\top} S_{2} z
\end{aligned}
$$

npurep:

$$
P: S:\left\{\begin{array}{c}
S \\
S
\end{array} \in S 1 \operatorname{tr}(\widehat{S}) \geqslant 1005000\right\}
$$

Preserving convexity

The linear combination of convex sets is convex

Let there be 2 convex sets S_{x}, S_{y}, let the set

$$
S=\left\{s \mid s=c_{1} x+c_{2} y, x \in S_{x}, y \in S_{y}, c_{1}, c_{2} \in \mathbb{R}\right\}
$$

Take two points from S : $s_{1}=c_{1} x_{1}+c_{2} y_{1}, s_{2}=c_{1} x_{2}+c_{2} y_{2}$ and prove that the segment between them $\theta s_{1}+(1-\theta) s_{2}, \theta \in[0,1]$ also belongs to S

$$
\begin{gathered}
\theta s_{1}+(1-\theta) s_{2} \\
\theta\left(c_{1} x_{1}+c_{2} y_{1}\right)+(1-\theta)\left(c_{1} x_{2}+c_{2} y_{2}\right) \\
c_{1}\left(\theta x_{1}+(1-\theta) x_{2}\right)+c_{2}\left(\theta y_{1}+(1-\theta) y_{2}\right) \\
c_{1} x+c_{2} y \in S
\end{gathered}
$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \rightarrow f(S)=\{f(x) \mid x \in S\} \text { convex } \quad(f(x)=\mathbf{A} x+\mathbf{b})
$$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\ldots+x_{m} A_{m} \preceq B\right\}$. Here $A_{i}, B \in \mathbf{S}^{p}$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$
S \subseteq \mathbb{R}^{m} \text { convex } \rightarrow f^{-1}(S)=\left\{x \in \mathbb{R}^{n} \mid f(x) \in S\right\} \text { convex }(f(x)=\mathbf{A} x+\mathbf{b})
$$

분 EXAMPLE

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}(x=$ $\left.a_{i}\right)=p_{i}$, where $i=1,>\ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability

