
A set  is usually called a budget set.

We say that the problem has a solution if the budget set is not empty: , in which the minimum or the infimum of the given function is achieved.

A point  is a global minimizer if  for all .
A point  is a local minimizer if there exists a neighborhood  of  such that  for all .
A point  is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood  of  such that  for all

 with .
We call  a stationary point (or critical) if . Any local minimizer must be a stationary point.

Let  be a compact set and  a continuous function on . So that, the point of the global minimum of the function  on  exists.

1 Background
f(x) →

x∈S
min

S

x ∈∗ S

x∗ f(x ) ≤∗ f(x) x

x∗ N x∗ f(x ) ≤∗ f(x) x ∈ N

x∗ N x∗ f(x ) <∗ f(x)
x ∈ N x = x∗

x∗ ∇f(x ) =∗ 0

Figure 1: Illustration of di!erent stationary (critical) points

Extreme value (Weierstrass) theorem

S ⊂ Rn f(x) S f(x) S

Figure 2: A lot of practical problems are theoretically solvable
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Suppose that  is continuously di!erentiable and that . Then we have:

Moreover, if  is twice continuously di!erentiable, we have:

Consider simple yet practical case of equality constraints:

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the
problem:

If  is a local minimizer and  is continuously di!erentiable in an open neighborhood, then

Suppose for contradiction that . Define the vector  and note that

Because  is continuous near , there is a scalar  such that

For any , we have by Taylor’s theorem that

Therefore,  for all . We have found a direction from  along which  decreases, so  is not a local minimizer, leading to a
contradiction.

Suppose that  is continuous in an open neighborhood of  and that

Then  is a strict local minimizer of .

Because the Hessian is continuous and positive definite at , we can choose a radius  such that  remains positive definite for all  in the open ball
. Taking any nonzero vector  with , we have  and so

f : R →n R p ∈ Rn

f(x + p) = f(x) + ∇f(x + tp) p  for some t ∈T (0, 1)

f

∇f(x + p) = ∇f(x) + ∇ f(x +∫
0

1
2 tp)p dt

f(x + p) = f(x) + ∇f(x) p +T p ∇ f(x +
2
1 T 2 tp)p  for some t ∈ (0, 1)

1.1 Lagrange multipliers

s.t. 

f(x) →
x∈Rn
min

h (x) = 0, i = 1, … , pi

L(x, ν) = f(x) + ν h (x) →
i=1

∑
p

i i
x∈R ,ν∈Rn p

min

2 Unconstrained optimization
First-Order Necessary Conditions

x∗ f

∇f(x ) =∗ 0 (1)

Proof

∇f(x ) =∗  0 p = −∇f(x )∗

p ∇f(x ) =T ∗ −∥∇f(x )∥ <∗ 2 0

∇f x∗ T > 0

p ∇f(x +T ∗ tp) < 0,  for all t ∈ [0, T ]

∈t̄ (0, T ]

f(x +∗ p) =t̄ f(x ) +∗ p ∇f(x +t̄ T ∗ tp),  for some t ∈ (0, )t̄

f(x +∗ p) <t̄ f(x )∗ ∈t̄ (0, T ] x∗ f x∗

Second-Order Su!icient Conditions

∇ f2 x∗

∇f(x ) =∗ 0 ∇ f(x ) ≻2 ∗ 0.

x∗ f

Proof

x∗ r > 0 ∇ f(x)2 x

B = {z ∣ ∥z − x ∥ <∗ r} p ∥p∥ < r x +∗ p ∈ B

f(x +∗ p) = f(x ) +∗ p ∇f(x ) +T ∗ p ∇ f(z)p
2
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where  for some . Since , we have , and therefore , giving the result.

Note, that if , i.e. the hessian is positive semidefinite, we cannot be sure if  is a local minimum.

One can verify, that  and , but  is not a local minimizer. Although the surface does not have a local minimizer at the origin, its
intersection with any vertical plane through the origin (a plane with equation  or ) is a curve that has a local minimum at the origin. In other words, if a
point starts at the origin  of the plane, and moves away from the origin along any straight line, the value of  will increase at the start of the

motion. Nevertheless,  is not a local minimizer of the function, because moving along a parabola such as  will cause the function value to decrease.

Direction  is a feasible direction at  if small steps along  do not take us outside of .

Consider a set  and a function . Suppose that  is a point of local minimum for  over , and further assume that  is
continuously di!erentiable around .

1. Then for every feasible direction  at  it holds that .

2. If, additionally,  is convex then

= f(x ) +∗ p ∇ f(z)p
2
1 T 2

z = x +∗ tp t ∈ (0, 1) z ∈ B p ∇ f(z)p >T 2 0 f(x +∗ p) > f(x )∗

Peano surface

∇f(x ) =∗ 0, ∇ f(x ) ⪰2 ∗ 0 x∗
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But how to determine optimality if the function is non-smooth?

Suppose , then  is a global minimizer of  if and only if

It should be mentioned, that in the convex case (i.e.,  is convex) necessary condition becomes su!icient.

One more important result for convex unconstrained case sounds as follows. If  - convex function defined on the convex set , then:

Any local minima is the global one.
The set of the local minimizers  is convex.
If  - strictly or strongly (di!erent cases 

$

) convex function, then  contains only one single point .

Figure 3: General first order local optimality condition

Question

Fermat’s rule

f : R →n R ∪ {∞} x∗ f

0 ∈ ∂f(x )∗

2.1 Convex case

f(x)

f(x) : S → R S

S∗

f(x) S∗ S =∗ {x }∗

3 Constrained problem

3.1 Optimization with equality conditions
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Things are pretty simple and intuitive in unconstrained problem. In this section we will add one equality constraint, i.e.

We will try to illustrate approach to solve this problem through the simple example with  and .

3.1.1 Intuition

s.t. 

f(x) →
x∈Rn
min

h(x) = 0

f(x) = x +1 x2 h(x) = x +1
2 x −2

2 2
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0

f(x) = x 1+x 2=C

C= -2
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C=0
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Illustration of KKT

(i) -of

I ↳
↳

↳ -



x1

x2

0 x1

x2

0
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δx
f(xF+ δx) < f(x F)

δxT(-∇f(x)) >0

Illustration of KKT
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Illustration of KKT
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Generally: in order to move from  along the budget set towards decreasing the function, we need to guarantee two conditions:

Let’s assume, that in the process of such a movement we have come to the point where

x1

x2

0 x1
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0

-∇h(xF)

Illustration of KKT
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0
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Illustration of KKT
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Then we came to the point of the budget set, moving from which it will not be possible to reduce our function. This is the local minimum in the
constrained problem :)

So let’s define a Lagrange function (just for our convenience):

Then if the problem is regular (we will define it later) and the point  is the local minimum of the problem described above, then there exist :

We should notice that .

Solution

Let  and  be twice di!erentiable at the point  and continuously di!erentiable in some neighborhood . The local minimum conditions for
 are written as

−∇f(x) = ν∇h(x)

⟨δx, −∇f(x)⟩ = ⟨δx, ν∇h(x)⟩ = 0

x1

x2

0 x1

x2

0

∇h(xF)

-∇f(x*) = ν∇h(x*)

Illustration of KKT

L(x, ν) = f(x) + νh(x)

x∗ ν∗

Necessary conditions

∇ L(x , ν ) = 0 that’s written abovex
∗ ∗

∇ L(x , ν ) = 0 budget constraintν
∗ ∗

L(x , ν ) =∗ ∗ f(x )∗

3.1.2 General formulation

s.t. 

f(x) →
x∈Rn
min

h (x) = 0, i = 1, … , pi

(ECP)

L(x, ν) = f(x) + ν h (x) =
i=1

∑
p

i i f(x) + ν h(x)⊤

f(x) h (x)i x∗ x∗

x ∈ R , ν ∈n Rp
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Depending on the behavior of the Hessian, the critical points can have a di!erent character.

l1: 0.16
l2: -0.18

Pose the optimization problem and solve them for linear system  for three cases (assuming the matrix is full rank):

ECP: Necessary conditions

∇ L(x , ν ) = 0x
∗ ∗

∇ L(x , ν ) = 0ν
∗ ∗

−4

−2

0

2

4

How eigenvalues of the hessian affects the critical point

Example

Ax = b, A ∈ m × n

m < n

m = n

m > n

3.2 Optimization with inequality conditions

3.2.1 Example

f(x) = x +1
2 x g(x) =2

2 x +1
2 x −2

2 1

s.t. 

f(x) →
x∈Rn
min

g(x) ≤ 0
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x1

x2

x1

x2

0

f(x) = x1
2+x 2

2

x*

minimum of f(x)

iso-contours of f(x)

Illustration of KKT (inequality case)

x1

x2

x1

x2

0

g(x) = x1
2+x 2

2-1

x*

minimum of f(x)
feasible region g(x) ≤ 0

Illustration of KKT (inequality case)



Thus, if the constraints of the type of inequalities are inactive in the constrained problem, then don’t worry and write out the solution to the unconstrained
problem. However, this is not the whole story 

%

. Consider the second childish example

x1

x2

x1

x2

0 x*

minimum of f(x)

How can we recognize that 
some feasible point is at 
local minimum?

xF

Illustration of KKT (inequality case)

x1

x2

x1

x2

0 x*

minimum of f(x)

Easy in this case! 
Just use unconstrained 
optimality conditions.

xF

∇f(xF) = 0
∇2f(xF) ≻ 0

Illustration of KKT (inequality case)

f(x) = (x −1 1) +2 (x +2 1) g(x) =2 x +1
2 x −2

2 1

s.t. 

f(x) →
x∈Rn
min

g(x) ≤ 0



x1

x2

x1

x2 f(x) = (x 1-1)2+(x 2+1) 2

x*

minimum of f(x)

iso-contours of f(x)

Illustration of KKT (inequality case)
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x1

x2 f(x) = (x 1-1)2+(x 2+1) 2

minimum of f(x)
feasible region g(x) ≤ 0

g(x) = x 1
2+x 2
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Illustration of KKT (inequality case)
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x1

x2

x1

x2 f(x) = (x 1-1)2+(x 2+1) 2

g(x) = x 1
2+x 2

2-1 

How can we recognize that 
some feasible point is at 
local minimum?

xF

Illustration of KKT (inequality case)

x1
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x1

x2 f(x) = (x 1-1)2+(x 2+1) 2

xF

Not very easy in this case! 
Even gradient will not be 
zero at local optimum

Illustration of KKT (inequality case)



x1

x2

x1

x2 f(x) = (x 1-1)2+(x 2+1) 2

xF

Effectively have an 
optimization problem with an 
equality constraint: g(x*) = 0

Illustration of KKT (inequality case)
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x*-∇f(x*) = λ∇h(x*)

Illustration of KKT (inequality case)



So, we have a problem:

Two possible cases:

 is inactive.  is active. 

Necessary conditions

, 
Su!icient conditions

Combining two possible cases, we can write down the general conditions for the problem:

Let’s define the Lagrange function:

The classical Karush-Kuhn-Tucker first and second order optimality conditions for a local minimizer , stated under the linear independence constraint
qualification (LICQ) (or other regularity conditions), can be written as follows:

If  is a local minimum of the problem described above, then there exists a unique Lagrange multiplier  such that:

x1

x2

x1

x2

∇g(xF)

xF

-∇f(xF)

x*

-∇f(x*) = λ∇h(x*)
λ > 0

Not a constrained 
local minimum as 
-∇f(xF) points in 
towards the feasible 
region

Illustration of KKT (inequality case)

s.t. 

f(x) →
x∈Rn
min

g(x) ≤ 0

g(x) ≤ 0 g(x ) <∗ 0 g(x) ≤ 0 g(x ) =∗ 0

g(x ) <∗ 0
∇f(x ) =∗ 0
∇ f(x ) >2 ∗ 0

g(x ) =∗ 0
−∇f(x ) =∗ λ∇g(x )∗ λ > 0

⟨y, ∇ L(x , λ )y⟩ >xx
2 ∗ ∗ 0,

∀y = 0 ∈ R :n ∇g(x ) y =∗ ⊤ 0

s.t. 

f(x) →
x∈Rn
min

g(x) ≤ 0

L(x, λ) = f(x) + λg(x)

x∗

x∗ λ∗
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It’s noticeable, that . Conditions  are the first scenario realization, and conditions  - the second
one.

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

@bibtex file

@bibtex file

Let ,  be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem  is equal to the
optimal value for the dual problem ). Let also the functions  be di!erentiable.

(1) ∇ L(x , λ ) = 0x
∗ ∗

(2) λ ≥ 0∗

(3) λ g(x ) = 0∗ ∗

(4) g(x ) ≤ 0∗

(5) ∀y ∈ C(x ) : ⟨y, ∇ L(x , λ )y⟩ > 0∗
xx
2 ∗ ∗

where C(x ) = {y  ∈ R ∣∇f(x ) y ≤ 0 and ∀i ∈ I(x ) : ∇g (x ) y ≤ 0} is the critical cone.∗ n ∗ ⊤ ∗
i

∗ ⊤

I(x ) = {i∣g (x ) = 0}∗
i

∗

L(x , λ ) =∗ ∗ f(x )∗ λ =∗ 0, (1), (4) λ >∗ 0, (1), (3)

3.2.2 General formulation

s.t. 

f (x) →0
x∈Rn
min

f (x) ≤ 0, i = 1, … , mi

h (x) = 0, i = 1, … , pi

L(x, λ, ν) = f (x) +0 λ f (x) +
i=1

∑
m

i i ν h (x)
i=1

∑
p

i i

4 Karush-Kuhn-Tucker conditions

@misc{kuhn1951nonlinear,
  title={Nonlinear programming, in (J. Neyman, ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability},
  author={Kuhn, Harold W and Tucker, Albert W},
  year={1951},
  publisher={University of California Press, Berkeley}
}

@article{karush1939minima,
  title={Minima of functions of several variables with inequalities as side constraints},
  author={Karush, William},
  journal={M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago},
  year={1939}
}

4.1 Necessary conditions

x∗ (λ , ν )∗ ∗ p∗

d∗ f , f , h0 i i

∇ L(x , λ , ν ) =x
∗ ∗ ∗ 0

∇ L(x , λ , ν ) =ν
∗ ∗ ∗ 0

λ ≥i
∗ 0, i = 1, … , m

λ f (x ) =i
∗

i
∗ 0, i = 1, … , m

f (x ) ≤i
∗ 0, i = 1, … , m
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These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into su!icient (for
example, Slater’s). Moreover, if you have regularity, you can write down necessary second order conditions  with semi-
definite hessian of Lagrangian.

Slater’s condition. If for a convex problem (i.e., assuming minimization,  are convex and  are a!ine), there exists a point  such that
 and  (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and

su!icient.
Linearity constraint qualification If  and  are a!ine functions, then no other condition is needed.
For other examples, see wiki.

For smooth, non-linear optimization problems, a second order su!icient condition is given as follows. The solution , which satisfies the KKT
conditions (above) is a constrained local minimum if for the Lagrangian,

the following conditions hold:

Lecture on KKT conditions (very intuitive explanation) in course “Elements of Statistical Learning” @ KTH.
One-line proof of KKT
On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints
On Second Order Optimality Conditions in Nonlinear Optimization
Numerical Optimization by Jorge Nocedal and Stephen J. Wright.

4.2 Some regularity conditions

⟨y, ∇ L(x , λ , ν )y⟩ ≥xx
2 ∗ ∗ ∗ 0

f , f0 i hi x

h(x) = 0 f (x) <i 0

fi hi

4.3 Su!icient conditions

x , λ , ν∗ ∗ ∗

L(x, λ, ν) = f (x) +0 λ f (x) +
i=1

∑
m

i i ν h (x)
i=1

∑
p

i i

⟨y, ∇ L(x , λ , ν )y⟩ > 0xx
2 ∗ ∗ ∗

∀y = 0 ∈ R : ∇h (x ) y = 0, ∇f (x ) y ≤ 0, ∇f (x ) y ≤ 0 n
i

∗ ⊤
0

∗ ⊤
j

∗ ⊤

i = 1, … , p ∀j : f (x ) = 0j
∗

5 References


