
problems:

Then we have weak duality: . Furthermore, if the functions  and  are convex and , then we have strong
duality: . While points  and  are optimal values for primal and dual problem if and only if:

Convex case is especially important since if we have Fenchel - Rockafellar problem with parameters , than the dual problem has the
form .

5.2 Sensitivity analysis

Let us switch from the original optimization problem

To the perturbed version of it:

Note, that we still have the only variable , while treating  as parameters. It is obvious, that  if 
. We will denote the optimal value of  as , while the optimal value of the original problem  is just . One can immediately

say, that .

Speaking of the value of some -th constraint we can say, that

 leaves the original problem
 means that we have relaxed the inequality
 means that we have tightened the constraint

One can even show, that when  is convex optimization problem,  is a convex function.

Suppose, that strong duality holds for the orriginal problem and suppose, that  is any feasible point for the perturbed problem:

Which means

And taking the optimal  for the perturbed problem, we have:
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In scenarios where strong duality holds, we can draw several insights about the sensitivity of optimal solutions in relation to the Lagrange
multipliers. These insights are derived from the inequality expressed in equation above:

1. Impact of Tightening a Constraint (Large ):
When the th constraint’s Lagrange multiplier, , holds a substantial value, and if this constraint is tightened (choosing ), there is a
guarantee that the optimal value, denoted by , will significantly increase.

2. E!ect of Adjusting Constraints with Large Positive or Negative :

If  is large and positive and  is chosen, or
If  is large and negative and  is selected,
then in either scenario, the optimal value  is expected to increase greatly.

3. Consequences of Loosening a Constraint (Small ):
If the Lagrange multiplier  for the th constraint is relatively small, and the constraint is loosened (choosing ), it is anticipated that
the optimal value  will not significantly decrease.

4. Outcomes of Tiny Adjustments in Constraints with Small :

When  is small and positive, and  is chosen, or
When  is small and negative, and  is opted for,
in both cases, the optimal value  will not significantly decrease.

These interpretations provide a framework for understanding how changes in constraints, reflected through their corresponding Lagrange
multipliers, impact the optimal solution in problems where strong duality holds.

5.3 Local sensitivity

Suppose now that  is di!erentiable at .

To show this result we consider the directional derivative of  along the direction of some -th basis vector :

From the inequality Equation 4 and taking the limit  with  we have

For the negative  we have:

The same idea can be used to establish the fact about .

The local sensitivity result Equation 5 provides a way to understand the impact of constraints on the optimal solution  of an optimization
problem. If a constraint  is negative at , it’s not a!ecting the optimal solution, meaning small changes to this constraint won’t alter the
optimal value. In this case, the corresponding optimal Lagrange multiplier will be zero, as per the principle of complementary slackness.

However, if , meaning the constraint is precisely met at the optimum, then the situation is di!erent. The value of the -th optimal
Lagrange multiplier, , gives us insight into how ‘sensitive’ or ‘active’ this constraint is. A small  indicates that slight adjustments to the
constraint won’t significantly a!ect the optimal value. Conversely, a large  implies that even minor changes to the constraint can have a
significant impact on the optimal solution.
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5.4 Shadow prices or tax interpretation

Consider an enterprise where  represents its operational strategy and  is the operating cost. Therefore,  denotes the profit in
dollars. Each constraint  signifies a resource or regulatory limit. The goal is to maximize profit while adhering to these limits, which is
equivalent to solving:

The optimal profit here is .

Now, imagine a scenario where exceeding limits is allowed, but at a cost. This cost is linear to the extent of violation, quantified by . The charge
for breaching the  constraint is . If , meaning the constraint is not fully utilized,  represents income for the firm.
Here,  is the cost (in dollars) per unit of violation for .

For instance, if  limits warehouse space, the firm can rent out extra space at  dollars per square meter or rent out unused space for
the same rate.

The firm’s total cost, considering operational and constraint costs, is . The firm aims to minimize ,
resulting in an optimal cost . The dual function  represents the best possible cost for the firm based on the prices of constraints , and
the optimal dual value  is this cost under the most unfavorable price conditions.

Weak duality implies that the cost in this flexible scenario (where the firm can trade constraint violations) is always less than or equal to the cost in
the strict original scenario. This is because any optimal operation  from the original scenario will cost less in the flexible scenario, as the firm
can earn from underused constraints.

If strong duality holds and the dual optimum is reached, the optimal  represents prices where the firm gains no extra advantage from trading
constraint violations. These optimal  values are o"en termed ‘shadow prices’ for the original problem, indicating the hypothetical cost of
constraint flexibility.

5.5 Mixed strategies for matrix games

In zero-sum matrix games, players 1 and 2 choose actions from sets  and , respectively. The outcome is a payment from
player 1 to player 2, determined by a payo! matrix . Each player aims to use mixed strategies, choosing actions according to a
probability distribution: player 1 uses probabilities  for each action , and player 2 uses .

The expected payo! from player 1 to player 2 is given by . Player 1 seeks to minimize this expected payo!, while
player 2 aims to maximize it.

Assuming player 2 knows player 1’s strategy , player 2 will choose  to maximize . The worst-case expected payo! is thus:
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The scheme of a mixed strategy matrix game
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5.5.1 Player 1’s Perspective
u v u P vT



Player 1’s optimal strategy minimizes this worst-case payo!, leading to the optimization problem:

This forms a convex optimization problem with the optimal value denoted as .

Conversely, if player 1 knows player 2’s strategy , the goal is to minimize . This leads to:

Player 2 then maximizes this to get the largest guaranteed payo!, solving the optimization problem:

The optimal value here is .

It’s generally advantageous to know the opponent’s strategy, but surprisingly, in mixed strategy matrix games, this advantage disappears. The key
lies in duality: the problems above are Lagrange duals. By formulating player 1’s problem as a linear program and introducing Lagrange
multipliers, we find that the dual problem matches player 2’s problem. Due to strong duality in feasible linear programs, , showing no
advantage in knowing the opponent’s strategy.

We approach problem Equation 6 by setting it up as a linear programming (LP) problem. The goal is to minimize a variable , subject to certain
constraints:

1. ,
2. The sum of elements in  equals 1 ( ),
3.  is less than or equal to  times a vector of ones ( ).

Here,  is an additional variable in the real numbers ( ).

We introduce multipliers for the constraints:  for ,  for , and  for . The Lagrangian is then formed as:

The dual function  is defined as:

The dual problem seeks to maximize  under the following conditions:
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5.5.2 Player 2’s Perspective
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5.5.3 Duality and Equivalence
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∗ p2

∗

5.5.4 Formulating and Solving the Lagrange Dual
t

u ≥ 0
u 1 u =T 1

P uT t P u ≤T t1

t t ∈ R

5.5.5 Constructing the Lagrangian
λ P u ≤T t1 μ u ≥ 0 ν 1 u =T 1

L = t + λ (P u −T T t1) − μ u +T ν(1 − 1 u) =T ν + (1 − 1 λ)t +T (P λ − ν1 − μ) uT

5.5.6 Defining the Dual Function
g(λ, μ, ν)

g(λ, μ, ν) = {ν

−∞
if 1 λ = 1 and P λ − ν1 = μT

otherwise

5.5.7 Solving the Dual Problem
ν



1. ,
2. The sum of elements in  equals 1 ( ),
3. ,
4. .

Upon eliminating , we obtain the Lagrange dual of Equation 6:

This formulation shows that the Lagrange dual problem is equivalent to problem Equation 7. Given the feasibility of these linear programs, strong
duality holds, meaning the optimal values of Equation 6 and Equation 7 are equal.
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5.5.8 Conclusion


