
1 General formulation

Some necessary or/and su!icient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

In fact, there might be very challenging to recognize the convenient form of optimization problem.
Analytical solution of KKT could be inviable.

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution .

Methods

s.t. g (x) ≤i

h (x) =j

f(x)
x∈Rn
min

0, i = 1, … , m

0, j = 1, … , k

1.1 Iterative methods

{x },t

x∗

Illustration of iterative method approaches to the solution x∗

def GeneralScheme(x, epsilon):
    while not StopCriterion(x, epsilon):
        OracleResponse = RequestOracle(x)
        x = NextPoint(x, OracleResponse)
    return x

1.2 Oracle conception
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2 Unsolvability of numerical optimization problem

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function  is Lipschitz continuous on :

with some constant  (Lipschitz constant). Here  - the -dimensional unit cube

Our goal is to find such  for some positive . Here  is the global minima of the problem. Uniform grid with  points on
each dimension guarantees at least this quality:

which means, that

Our goal is to find the  for some . So, we need to sample  points, since we need to measure function in  points. Doesn’t look scary, but
if we’ll take , computations on the modern personal computers will take 31,250,000 years.

Argument closeness:

f(xk), f’(x k), f’’( xk)

ORACLE

Black - box

xk

Depending on the maximum order of derivative available from the oracle we call the oracles as zero order, first order, second order oravle and etc.

s.t. 

f(x)
x∈Rn
min

x ∈ Cn

f(⋅) : R →n R Bn

∣f(x) − f(y)∣ ≤ L∥x − y∥ ∀x, y ∈∞ C ,n

L Cn n

C =n {x ∈ R ∣n 0 ≤ x ≤i 1, i = 1, … , n}

:x~ ∣f( ) −x~ f ∣ ≤∗ ε ε f ∗ p

∥ −x~ x ∥ ≤∗ ∞ ,
2p

1

∣f( ) −x~ f(x )∣ ≤∗ 2p

L

p ε ( 2ε
L )n

pn

L = 2, n = 11, ε = 0.01

2.1 Stopping rules



Function value closeness:

Closeness to a critical point

But  and  are unknown!

Sometimes, we can use the trick:

Note: it’s better to use relative changing of these values, i.e. .

Suppose, you are trying to estimate the vector  with some approximation . One can choose between two relative errors:

If both  and  are close to each other, then the di!erence between them is small, while if your approximation is far from the truth (say, 
 or  they di!er drastically).

3 Contents of the chapter

∥x −k x ∥ <∗ 2 ε

∥f −k f ∥ <∗
2 ε

∥f (x )∥ <′
k 2 ε

x∗ f =∗ f(x )∗

∥x −k+1 x ∥ =k ∥x −k+1 x +k x −∗ x ∥ ≤∗ ∥x −k+1 x ∥ +∗ ∥x −k x ∥ ≤∗ 2ε

∥x ∥k 2

∥x − x ∥k+1 k 2

Example

xtrue xapprox

∥x ∥approx

∥x − x ∥approx true

∥x ∥true

∥x − x ∥approx true

xapprox xtrue x =approx

10xtrue x =approx 0.01xtrue

2.2 Local nature of the methods

Illustration of the idea of locality in black-box optimization

x

f(x)

𝜙1(𝑥)

f(x)

xk xk+1

𝜙2(𝑥)
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Projected subgradient
descent

Linear Programming and
simplex algorithm

Mirror descent Automatic di!erentiation

Stochastic gradient
descent

Stochastic average
gradient

ADAM: A Method for
Stochastic Optimization

Lookahead Optimizer: 
steps forward,  step
back

k

1

Bee algorithm Binary search

WHO WILL WIN?

GD

CG

Conjugate gradients

lk rk

lk+1 rk+1 lk+1 rk+1

Golden search

f(xk)

𝜙1(η) η*

𝜙2(η)

η

𝜙 η

0

Inexact line search Natural gradient descent Nelder–Mead Simulated annealing

Successive parabolic
interpolation
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1 Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for di!erent types of convergence. Let  be a
sequence in  that converges to zero.

We can define the linear convergence in a two di!erent forms:

for all su!iciently large . Here  and . This means that the distance to the solution  decreases at each iteration by at
least a constant factor bounded away from . Note, that sometimes this type of convergence is also called exponential or geometric. We call the 
the convergence rate.

Suppose, you have two sequences with linear convergence rates  and , which one is faster?

Let us have the following sequence:

One can immediately conclude, that we have a linear convergence with parameters  and .

Let us have the following sequence:

Will this sequence be convergent? What is the convergence rate?

If the sequence  converges to zero, but does not have linear convergence, the convergence is said to be sublinear. Sometimes we can considet
the following class of sublinear convergence:

where  and . Note, that sublinear convergence means, that the sequence is converging slower, than any geometric
progression.

The convergence is said to be superlinear if:

where  or , . Note, that superlinear convergence is also linear convergence (one can even say, that it is linear
convergence with ).

Theory > Rates of convergence

Rates of convergence

r =k {∥x −k x ∥ }∗
2

Rn

1.1 Linear convergence

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −k

k+1 x ∥ ≤∗
2 q∥x −k x ∥ ,∗

2

k q ∈ (0, 1) 0 < C < ∞ x∗

1 q

Question

q =1 0.1 q =2 0.7

Example

r =k 3k

1

q =
3
1

C = 0

Question

r =k 3k

4

1.2 Sublinear convergence
rk

∥x −k+1 x ∥ ≤∗
2 Ck ,q

q < 0 0 < C < ∞

1.3 Superlinear convergence

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −k2

k+1 x ∥ ≤∗
2 C ∥x −k k x ∥ ,∗

2

q ∈ (0, 1) 0 < C <k ∞ C →k 0
q = 0

1.4 Quadratic convergence
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where  and .

Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton’s method converges quadratically
under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problem is ill-conditioned
the convergence constant  is close to .

2 How to determine convergence type

Let  be a sequence of non-negative numbers, converging to zero, and let

If , then  has linear convergence with constant .
In particular, if , then  has superlinear convergence.
If , then  has sublinear convergence.
The case  is impossible.

Let  be a sequence of strictly positive numbers converging to zero. Let

If there exists  and , then  has linear convergence with constant .
In particular, if , then  has superlinear convergence.

If  does not exist, but , then  has linear convergence with a constant not exceeding .

If , then  has sublinear convergence.

The case  is impossible.

In all other cases (i.e., when ) we cannot claim anything concrete about the convergence rate

.

Let us have the following sequence:

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −2k

k+1 x ∥ ≤∗
2 C∥x −k x ∥ ,∗

2
2

q ∈ (0, 1) 0 < C < ∞

Di!erence between the convergence speed

q 1

2.1 Root test
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sup k
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∞
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2.2 Ratio test
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∞

Example
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Determine the convergence

Let us have the following sequence:

Determine the convergence

Let us have the following sequence:

Determine the convergence

Let us have the following sequence:

Determine the convergence
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Example
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Try to use root test here

r =k
kk
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