

Q

٢٦

Methods

1 General formulation

$$egin{aligned} \min_{x\in\mathbb{R}^n}f(x)\ ext{s.t. }g_i(x)\leq &0,\ i=1,\ldots,m\ h_j(x)=&0,\ j=1,\ldots,k \end{aligned}$$

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

• In fact, there might be very challenging to recognize the convenient form of optimization problem.

• Analytical solution of KKT could be inviable.

1.1 Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

 $\{x_t\},\$

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution x_* .

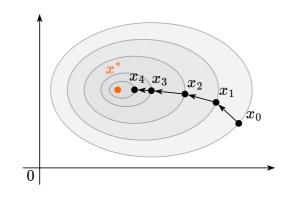
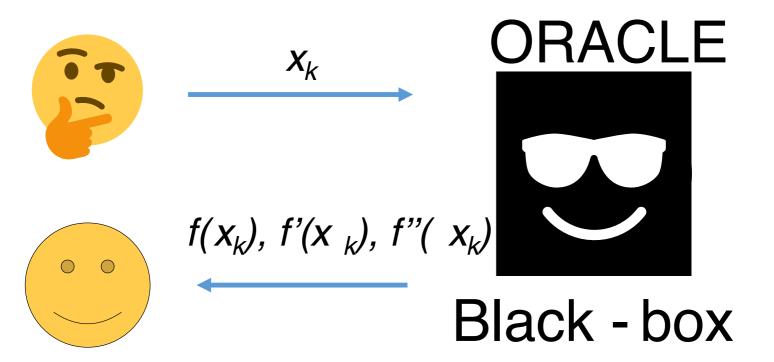


Illustration of iterative method approaches to the solution x^st

```
def GeneralScheme(x, epsilon):
while not StopCriterion(x, epsilon):
    OracleResponse = RequestOracle(x)
    x = NextPoint(x, OracleResponse)
    return x
```

1.2 Oracle conception



Depending on the maximum order of derivative available from the oracle we call the oracles as zero order, first order, second order oravle and etc.

2 Unsolvability of numerical optimization problem

In general, optimization problems are unsolvable. $(\mathcal{V})/(\mathcal{V})$

Consider the following simple optimization problem of a function over unit cube:

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) \ ext{s.t.} \ x\in\mathbb{C}^n \end{aligned}$$

We assume, that the objective function $f(\cdot):\mathbb{R}^n o\mathbb{R}$ is Lipschitz continuous on \mathbb{B}^n :

$$|f(x)-f(y)|\leq L\|x-y\|_{\infty}orall x,y\in\mathbb{C}^n$$

with some constant L (Lipschitz constant). Here \mathbb{C}^n - the n-dimensional unit cube

$$\mathbb{C}^n = \{x \in \mathbb{R}^n \mid 0 \leq x_i \leq 1, i = 1, \dots, n\}$$

Our goal is to find such $\tilde{x} : |f(\tilde{x}) - f^*| \le \varepsilon$ for some positive ε . Here f^* is the global minima of the problem. Uniform grid with p points on each dimension guarantees at least this quality:

$$\| ilde{x}-x_*\|_\infty \leq rac{1}{2p},$$

which means, that

$$|f(ilde{x}) - f(x_*)| \leq rac{L}{2p}$$

Our goal is to find the p for some ε . So, we need to sample $\left(\frac{L}{2\varepsilon}\right)^n$ points, since we need to measure function in p^n points. Doesn't look scary, but if we'll take $L = 2, n = 11, \varepsilon = 0.01$, computations on the modern personal computers will take 31,250,000 years.

2.1 Stopping rules

• Argument closeness:

 $\|x_k - x_*\|_2 < arepsilon$

• Function value closeness:

 $\|f_k - f^*\|_2 < arepsilon$

• Closeness to a critical point

 $\|f'(x_k)\|_2 < arepsilon$

But x_* and $f^* = f(x_*)$ are unknown!

Sometimes, we can use the trick:

$$\|x_{k+1} - x_k\| = \|x_{k+1} - x_k + x_* - x_*\| \le \|x_{k+1} - x_*\| + \|x_k - x_*\| \le 2arepsilon$$

Note: it's better to use relative changing of these values, i.e. $\frac{\|x_{k+1} - x_k\|_2}{\|x_k\|_2}$.

Example

Suppose, you are trying to estimate the vector x_{true} with some approximation x_{approx} . One can choose between two relative errors:

$$rac{\|x_{approx} - x_{true}\|}{\|x_{approx}\|} = rac{\|x_{approx} - x_{true}\|}{\|x_{true}\|}$$

If both x_{approx} and x_{true} are close to each other, then the difference between them is small, while if your approximation is far from the truth (say, $x_{approx} = 10x_{true}$ or $x_{approx} = 0.01x_{true}$ they differ drastically).

2.2 Local nature of the methods

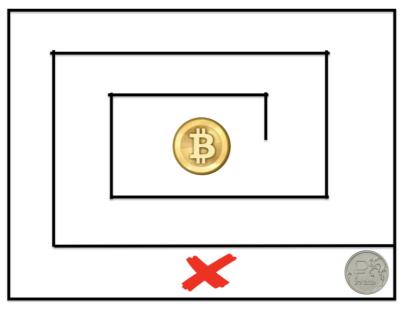
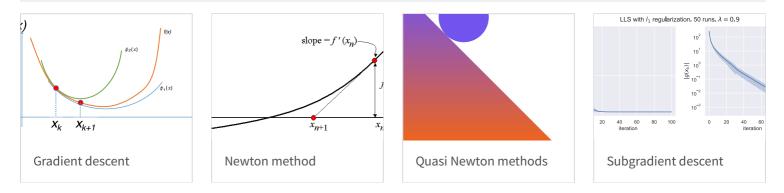
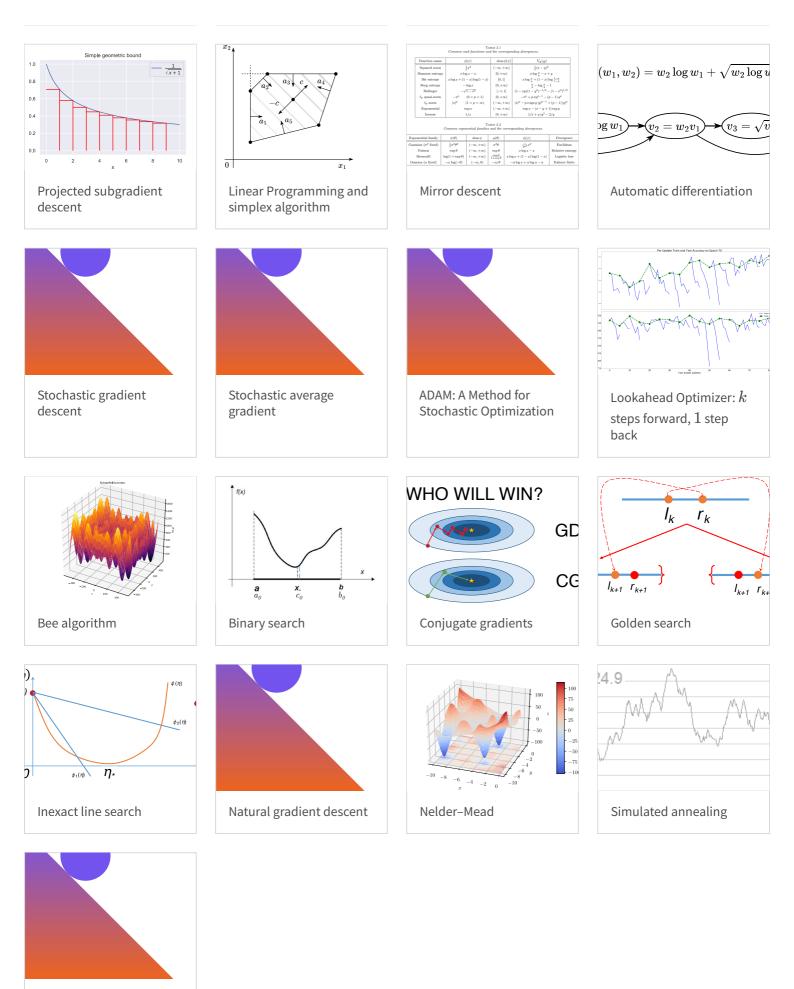


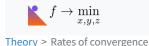
Illustration of the idea of locality in black-box optimization

3 Contents of the chapter





Successive parabolic interpolation



Rates of convergence

1 Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for different types of convergence. Let $r_k = \{ \|x_k - x^*\|_2 \}$ be a sequence in \mathbb{R}^n that converges to zero.

1.1 Linear convergence

😲 Question

We can define the *linear* convergence in a two different forms:

 $\|x_{k+1}-x^*\|_2 \leq Cq^k \quad ext{or} \quad \|x_{k+1}-x^*\|_2 \leq q\|x_k-x^*\|_2,$

for all sufficiently large k. Here $q \in (0, 1)$ and $0 < C < \infty$. This means that the distance to the solution x^* decreases at each iteration by at least a constant factor bounded away from 1. Note, that sometimes this type of convergence is also called *exponential* or *geometric*. We call the q the convergence rate.

Suppose, you have two sequences with linear convergence rates $q_1=0.1$ and $q_2=0.7$, which one is faster?

🕎 Example
Let us have the following sequence:
$r_k=rac{1}{3^k}$
One can immediately conclude, that we have a linear convergence with parameters $q=rac{1}{3}$ and $C=0.$
😲 Question
Let us have the following sequence:
$r_k=rac{4}{3^k}$
Will this sequence be convergent? What is the convergence rate?

1.2 Sublinear convergence

If the sequence r_k converges to zero, but does not have linear convergence, the convergence is said to be sublinear. Sometimes we can considet the following class of sublinear convergence:

$$\|x_{k+1}-x^*\|_2\leq Ck^q,$$

where q < 0 and $0 < C < \infty$. Note, that sublinear convergence means, that the sequence is converging slower, than any geometric progression.

1.3 Superlinear convergence

The convergence is said to be *superlinear* if:

$$\|x_{k+1}-x^*\|_2 \leq Cq^{k^2} \qquad ext{or} \qquad \|x_{k+1}-x^*\|_2 \leq C_k \|x_k-x^*\|_2,$$

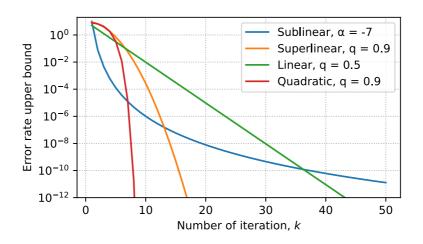
where $q \in (0, 1)$ or $0 < C_k < \infty, C_k \rightarrow 0$. Note, that superlinear convergence is also linear convergence (one can even say, that it is linear convergence with q = 0).

1.4 Quadratic convergence

Q

$$\|x_{k+1}-x^*\|_2 \leq Cq^{2^k} \qquad ext{or} \qquad \|x_{k+1}-x^*\|_2 \leq C\|x_k-x^*\|_2^2,$$

where $q \in (0, 1)$ and $0 < C < \infty$.



Difference between the convergence speed

Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton's method converges quadratically under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problem is ill-conditioned the convergence constant q is close to 1.

2 How to determine convergence type

2.1 Root test

Let $\{r_k\}_{k=m}^\infty$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k o \infty} \sup_k \; r_k^{1/k}$$

- If $0 \leq q < 1$, then $\{r_k\}_{k=m}^\infty$ has linear convergence with constant q.
- In particular, if q=0 , then $\{r_k\}_{k=m}^\infty$ has superlinear convergence.
- If q=1, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.
- The case q > 1 is impossible.

2.2 Ratio test

Let $\{r_k\}_{k=m}^\infty$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k o \infty} rac{r_{k+1}}{r_k}$$

- If there exists q and $0 \leq q < 1$, then $\{r_k\}_{k=m}^\infty$ has linear convergence with constant q.
- In particular, if q = 0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence with constant q. If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q. If $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} = 1$, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.

- The case $\lim_{k \to \infty} \inf_{k} \frac{r_{k+1}}{r_k} > 1$ is impossible. In all other cases (i.e., when $\lim_{k \to \infty} \inf_{k} \frac{r_{k+1}}{r_k} < 1 \le \lim_{k \to \infty} \sup_{k} \frac{r_{k+1}}{r_k}$) we cannot claim anything concrete about the convergence rate $\{r_k\}_{k=m}^{\infty}$

Example

Let us have the following sequence:

$$r_k = rac{1}{k}$$

Determine the convergence

🕎 Example

Let us have the following sequence:

$$r_k = rac{1}{k^2}$$

Determine the convergence

🕎 Example

Let us have the following sequence:

$$r_k=rac{1}{k^q}, q>1$$

Determine the convergence

🕎 Try to use root test here

Let us have the following sequence:

 $r_k = \frac{1}{k^k}$

Determine the convergence

3 References

- Code for convergence plots Open In Colab
- CMC seminars (ru)
- Numerical Optimization by J.Nocedal and S.J.Wright