
1 General formulation

Some necessary or/and su!icient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

In fact, there might be very challenging to recognize the convenient form of optimization problem.
Analytical solution of KKT could be inviable.

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution .

Methods

s.t. g (x) ≤i

h (x) =j

f(x)
x∈Rn
min

0, i = 1, … , m

0, j = 1, … , k

1.1 Iterative methods

{x },t

x∗

Illustration of iterative method approaches to the solution x∗

def GeneralScheme(x, epsilon):
 while not StopCriterion(x, epsilon):
 OracleResponse = RequestOracle(x)
 x = NextPoint(x, OracleResponse)
 return x

1.2 Oracle conception

  

http://localhost:7617/docs/theory/Optimality.html
http://localhost:7617/docs/theory/Convex_optimization_problem.html
http://localhost:7617/
https://github.com/MerkulovDaniil/optim
https://www.youtube.com/@fmin
https://t.me/fminxyz

2 Unsolvability of numerical optimization problem

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function is Lipschitz continuous on :

with some constant (Lipschitz constant). Here - the -dimensional unit cube

Our goal is to find such for some positive . Here is the global minima of the problem. Uniform grid with points on
each dimension guarantees at least this quality:

which means, that

Our goal is to find the for some . So, we need to sample points, since we need to measure function in points. Doesn’t look scary, but
if we’ll take , computations on the modern personal computers will take 31,250,000 years.

Argument closeness:

f(xk), f’(x k), f’’(xk)

ORACLE

Black - box

xk

Depending on the maximum order of derivative available from the oracle we call the oracles as zero order, first order, second order oravle and etc.

s.t.

f(x)
x∈Rn
min

x ∈ Cn

f(⋅) : R →n R Bn

∣f(x) − f(y)∣ ≤ L∥x − y∥ ∀x, y ∈∞ C ,n

L Cn n

C =n {x ∈ R ∣n 0 ≤ x ≤i 1, i = 1, … , n}

:x~ ∣f() −x~ f ∣ ≤∗ ε ε f ∗ p

∥ −x~ x ∥ ≤∗ ∞ ,
2p

1

∣f() −x~ f(x)∣ ≤∗ 2p

L

p ε (2ε
L)n

pn

L = 2, n = 11, ε = 0.01

2.1 Stopping rules

Function value closeness:

Closeness to a critical point

But and are unknown!

Sometimes, we can use the trick:

Note: it’s better to use relative changing of these values, i.e. .

Suppose, you are trying to estimate the vector with some approximation . One can choose between two relative errors:

If both and are close to each other, then the di!erence between them is small, while if your approximation is far from the truth (say,
 or they di!er drastically).

3 Contents of the chapter

∥x −k x ∥ <∗ 2 ε

∥f −k f ∥ <∗
2 ε

∥f (x)∥ <′
k 2 ε

x∗ f =∗ f(x)∗

∥x −k+1 x ∥ =k ∥x −k+1 x +k x −∗ x ∥ ≤∗ ∥x −k+1 x ∥ +∗ ∥x −k x ∥ ≤∗ 2ε

∥x ∥k 2

∥x − x ∥k+1 k 2

Example

xtrue xapprox

∥x ∥approx

∥x − x ∥approx true

∥x ∥true

∥x − x ∥approx true

xapprox xtrue x =approx

10xtrue x =approx 0.01xtrue

2.2 Local nature of the methods

Illustration of the idea of locality in black-box optimization

x

f(x)

𝜙1(𝑥)

f(x)

xk xk+1

𝜙2(𝑥)

Gradient descent Newton method Quasi Newton methods Subgradient descent

http://localhost:7617/docs/methods/fom/GD.html
http://localhost:7617/docs/methods/adaptive_metrics/Newton.html
http://localhost:7617/docs/methods/adaptive_metrics/Quasi_newton.html
http://localhost:7617/docs/methods/fom/Subgradient%20descent.html

Projected subgradient
descent

Linear Programming and
simplex algorithm

Mirror descent Automatic di!erentiation

Stochastic gradient
descent

Stochastic average
gradient

ADAM: A Method for
Stochastic Optimization

Lookahead Optimizer:
steps forward, step
back

k

1

Bee algorithm Binary search

WHO WILL WIN?

GD

CG

Conjugate gradients

lk rk

lk+1 rk+1 lk+1 rk+1

Golden search

f(xk)

𝜙1(η) η*

𝜙2(η)

η

𝜙 η

0

Inexact line search Natural gradient descent Nelder–Mead Simulated annealing

Successive parabolic
interpolation

http://localhost:7617/docs/methods/fom/GD.html
http://localhost:7617/docs/methods/adaptive_metrics/Newton.html
http://localhost:7617/docs/methods/adaptive_metrics/Quasi_newton.html
http://localhost:7617/docs/methods/fom/Subgradient%20descent.html
http://localhost:7617/docs/methods/fom/Projected_subgradient_descent.html
http://localhost:7617/docs/methods/Simplex.html
http://localhost:7617/docs/methods/fom/Mirror_descent.html
http://localhost:7617/docs/methods/Autograd.html
http://localhost:7617/docs/methods/fom/SGD.html
http://localhost:7617/docs/methods/fom/SAG.html
http://localhost:7617/docs/methods/fom/ADAM.html
http://localhost:7617/docs/methods/fom/Lookahead.html
http://localhost:7617/docs/methods/zom/bee_algorithm.html
http://localhost:7617/docs/methods/line_search/binary_search.html
http://localhost:7617/docs/methods/adaptive_metrics/CG.html
http://localhost:7617/docs/methods/line_search/golden_search.html
http://localhost:7617/docs/methods/line_search/inexact.html
http://localhost:7617/docs/methods/adaptive_metrics/Natural_gradient.html
http://localhost:7617/docs/methods/zom/nelder-mead.html
http://localhost:7617/docs/methods/zom/simulated-annealing.html
http://localhost:7617/docs/methods/line_search/parabola.html

1 Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for di!erent types of convergence. Let be a
sequence in that converges to zero.

We can define the linear convergence in a two di!erent forms:

for all su!iciently large . Here and . This means that the distance to the solution decreases at each iteration by at
least a constant factor bounded away from . Note, that sometimes this type of convergence is also called exponential or geometric. We call the
the convergence rate.

Suppose, you have two sequences with linear convergence rates and , which one is faster?

Let us have the following sequence:

One can immediately conclude, that we have a linear convergence with parameters and .

Let us have the following sequence:

Will this sequence be convergent? What is the convergence rate?

If the sequence converges to zero, but does not have linear convergence, the convergence is said to be sublinear. Sometimes we can considet
the following class of sublinear convergence:

where and . Note, that sublinear convergence means, that the sequence is converging slower, than any geometric
progression.

The convergence is said to be superlinear if:

where or , . Note, that superlinear convergence is also linear convergence (one can even say, that it is linear
convergence with).

Theory > Rates of convergence

Rates of convergence

r =k {∥x −k x ∥ }∗
2

Rn

1.1 Linear convergence

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −k

k+1 x ∥ ≤∗
2 q∥x −k x ∥ ,∗

2

k q ∈ (0, 1) 0 < C < ∞ x∗

1 q

Question

q =1 0.1 q =2 0.7

Example

r =k 3k

1

q =
3
1

C = 0

Question

r =k 3k

4

1.2 Sublinear convergence
rk

∥x −k+1 x ∥ ≤∗
2 Ck ,q

q < 0 0 < C < ∞

1.3 Superlinear convergence

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −k2

k+1 x ∥ ≤∗
2 C ∥x −k k x ∥ ,∗

2

q ∈ (0, 1) 0 < C <k ∞ C →k 0
q = 0

1.4 Quadratic convergence

  

http://localhost:3024/docs/theory/
http://localhost:3024/docs/theory/Rates_of_convergence.html
http://localhost:3024/
https://github.com/MerkulovDaniil/optim
https://www.youtube.com/@fmin
https://t.me/fminxyz

where and .

Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton’s method converges quadratically
under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problem is ill-conditioned
the convergence constant is close to .

2 How to determine convergence type

Let be a sequence of non-negative numbers, converging to zero, and let

If , then has linear convergence with constant .
In particular, if , then has superlinear convergence.
If , then has sublinear convergence.
The case is impossible.

Let be a sequence of strictly positive numbers converging to zero. Let

If there exists and , then has linear convergence with constant .
In particular, if , then has superlinear convergence.

If does not exist, but , then has linear convergence with a constant not exceeding .

If , then has sublinear convergence.

The case is impossible.

In all other cases (i.e., when) we cannot claim anything concrete about the convergence rate

.

Let us have the following sequence:

∥x −k+1 x ∥ ≤∗
2 Cq or ∥x −2k

k+1 x ∥ ≤∗
2 C∥x −k x ∥ ,∗

2
2

q ∈ (0, 1) 0 < C < ∞

Di!erence between the convergence speed

q 1

2.1 Root test
{r }k k=m

∞

q = r
k→∞
lim

k

sup k
1/k

0 ≤ q < 1 {r }k k=m
∞ q

q = 0 {r }k k=m
∞

q = 1 {r }k k=m
∞

q > 1

2.2 Ratio test
{r }k k=m

∞

q =
k→∞
lim

rk

rk+1

q 0 ≤ q < 1 {r }k k=m
∞ q

q = 0 {r }k k=m
∞

q q = sup <
k→∞
lim k rk

rk+1 1 {r }k k=m
∞ q

inf =
k→∞
lim k

rk

rk+1 1 {r }k k=m
∞

inf >
k→∞
lim k

rk

rk+1 1

inf <
k→∞
lim k

rk

rk+1 1 ≤ sup
k→∞
lim k rk

rk+1

{r }k k=m
∞

Example

r =k
k

1

Determine the convergence

Let us have the following sequence:

Determine the convergence

Let us have the following sequence:

Determine the convergence

Let us have the following sequence:

Determine the convergence

3 References

Code for convergence plots - Open In Colab
CMC seminars (ru)
Numerical Optimization by J.Nocedal and S.J.Wright

Example

r =k
k2

1

Example

r =k , q >
kq

1
1

Try to use root test here

r =k
kk

1

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Convergence.ipynb
http://www.machinelearning.ru/wiki/images/9/9a/MOMO18_Extra1.pdf

