
1 Problem

Suppose, we have a problem of minimization of a function of scalar variable:

Sometimes, we refer to the similar problem of finding minimum on the line segment :

Line search is one of the simplest formal optimization problems, however, it is an important link in solving more complex tasks, so it is very
important to solve it e!ectively. Let’s restrict the class of problems under consideration where is a unimodal function.

Function is called unimodal on , if there is , that and

2 Key property of unimodal functions

Let be unimodal function on . Than if , then:

if
if

Methods > Line search

Line search

f(x) : R → R

f(x) →
x∈R
min

[a, b]

f(x) →
x∈[a,b]
min

f(x)

f(x) [a, b] x ∈∗ [a, b] f(x) >1 f(x) ∀a ≤2 x <1 x <2 x∗ f(x) <1

f(x) ∀x <2 ∗ x <1 x ≤2 b

Illustration

f(x) [a, b] x <1 x ∈2 [a, b]

f(x) ≤1 f(x) →2 x ∈∗ [a, x]2

f(x) ≥1 f(x) →2 x ∈∗ [x , b]1

  

http://localhost:7617/docs/methods/
http://localhost:7617/docs/methods/line_search/
http://localhost:7617/
https://github.com/MerkulovDaniil/optim
https://www.youtube.com/@fmin
https://t.me/fminxyz

3 Code

Open In Colab

4 References

CMC seminars (ru)

We divide a segment into two
equal parts and choose the one
that contains the solution of
the problem using the values of
functions.

Binary search

lk rk

lk+1 rk+1 lk+1 rk+1

The idea is quite similar to the
dichotomy method. There are
two golden points on the line
segment (le" and right) and the
insightful idea is, that on the
next iteration…

Golden search

f(xk)

𝜙1(η) η*

𝜙2(η)

η

𝜙 η

0

This strategy of inexact line
search works well in practice,
as well as it has the following
geometric interpretation:

Inexact line search

Sampling 3 points of a function
determines unique parabola.
Using this information we will
go directly to its minimum.
Suppose, we have 3 points

 such that…

Successive parabolic
interpolation

x <1 x <2 x3

http://localhost:7617/docs/methods/line_search/binary_search.html
http://localhost:7617/docs/methods/line_search/golden_search.html
http://localhost:7617/docs/methods/line_search/inexact.html
http://localhost:7617/docs/methods/line_search/parabola.html
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Line_search.ipynb
http://www.machinelearning.ru/wiki/images/4/4d/MOMO16_min1d.pdf

1 Idea

We divide a segment into two equal parts and choose the one that contains the solution of the problem using the values of functions.

2 Algorithm

3 Bounds

Methods > Line search > Binary search

Binary search

def binary_search(f, a, b, epsilon):
 c = (a + b) / 2
 while abs(b - a) > epsilon:
 y = (a + c) / 2.0
 if f(y) <= f(c):
 b = c
 c = y
 else:
 z = (b + c) / 2.0
 if f(c) <= f(z):
 a = y
 b = z
 else:
 a = c
 c = z
 return c

Illustration

  

http://localhost:7617/docs/methods/
http://localhost:7617/docs/methods/line_search/
http://localhost:7617/docs/methods/line_search/binary_search.html
http://localhost:7617/
https://github.com/MerkulovDaniil/optim
https://www.youtube.com/@fmin
https://t.me/fminxyz

The length of the line segment on -th iteration:

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration :

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is , which implies:

By marking the right side of the last inequality for , we get the number of method iterations needed to achieve accuracy:

k + 1

Δ =k+1 b −k+1 a =k+1 (b −
2k

1
a)

xk+1

∣x −k+1 x ∣ ≤∗ ≤
2

Δk+1 (b −
2k+1

1
a) ≤ (0.5) ⋅k+1 (b − a)

N = 2 ⋅ k

∣x −k+1 x ∣ ≤∗ (0.5) ⋅+12
N

(b − a) ≤ (0.707)N

2
b − a

ε ε

K = log − 1⌈ 2
ε

b − a ⌉

1 Idea

The idea is quite similar to the dichotomy method. There are two golden points on the line segment (le! and right) and the insightful idea is, that
on the next iteration one of the points will remain the golden point.

2 Algorithm 

3 Bounds

where .

The geometric progression constant more than the dichotomy method - worse than
The number of function calls is less than for the dichotomy method - worse than - (for each iteration of the dichotomy method,
except for the first one, the function is calculated no more than 2 times, and for the gold method - no more than one)

Methods > Line search > Golden search

Golden search

lk rk

lk+1 rk+1 lk+1 rk+1

k iteration

k+1 iteration

Illustration

def golden_search(f, a, b, epsilon):
 tau = (sqrt(5) + 1) / 2
 y = a + (b - a) / tau**2
 z = a + (b - a) / tau
 while b - a > epsilon:
 if f(y) <= f(z):
 b = z
 z = y
 y = a + (b - a) / tau**2
 else:
 a = y
 y = z
 z = a + (b - a) / tau
 return (a + b) / 2

∣x −k+1 x ∣ ≤∗ b −k+1 a =k+1 (b −(
τ

1)
N−1

a) ≈ 0.618 (b −k a),

τ = 2
+15

0.618 0.5
0.707 0.618

  

http://localhost:7617/docs/methods/
http://localhost:7617/docs/methods/line_search/
http://localhost:7617/docs/methods/line_search/golden_search.html
http://localhost:7617/
https://github.com/MerkulovDaniil/optim
https://www.youtube.com/@fmin
https://t.me/fminxyz

1 Idea

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its minimum. Suppose, we have 3 points
 such that line segment contains minimum of a function . Then, we need to solve the following system of

equations:

Note, that this system is linear, since we need to solve it on . Minimum of this parabola will be calculated as:

Note, that if , than will lie in

2 Algorithm

3 Bounds

The convergence of this method is superlinear, but local, which means, that you can take profit from using this method only near some neighbour
of optimum.

Methods > Line search > Successive parabolic interpolation

Successive parabolic interpolation

x <1 x <2 x3 [x , x]1 3 f(x)

ax +i
2 bx +i c = f =i f(x), i =i 1, 2, 3

a, b, c

u = − =
2a

b
x −2 2 (x − x)(f − f) − (x − x)(f − f)[2 1 2 3 2 3 2 1]

(x − x) (f − f) − (x − x) (f − f)2 1
2

2 3 2 3
2

2 1

f <2 f , f <1 2 f3 u [x , x]1 3

def parabola_search(f, x1, x2, x3, epsilon):
 f1, f2, f3 = f(x1), f(x2), f(x3)
 while x3 - x1 > epsilon:
 u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2
 fu = f(u)

 if x2 <= u:
 if f2 <= fu:
 x1, x2, x3 = x1, x2, u
 f1, f2, f3 = f1, f2, fu
 else:
 x1, x2, x3 = x2, u, x3
 f1, f2, f3 = f2, fu, f3
 else:
 if fu <= f2:
 x1, x2, x3 = x1, u, x2
 f1, f2, f3 = f1, fu, f2
 else:
 x1, x2, x3 = u, x2, x3
 f1, f2, f3 = fu, f2, f3
 return (x1 + x3) / 2

http://localhost:3024/docs/methods/
http://localhost:3024/docs/methods/line_search/
http://localhost:3024/docs/methods/line_search/parabola.html

xk2 xk - 1 .+f(x)

L = argmin f(x) = argmin 4(2)
20 20

x(t) = f(x-
#

.

OXk+1~f(xi)
"

= f(x) fx
uka xk+1 o 2

·

ii ge(t)
X

8 S

4
=

(2) = y(0) + (-0) = f(x) - vf(x)vf(x)d

y=() = f(x)) - 1Pf(x)/1- L

ge(t) = f(x) - Cull=f(x)/42
C-medonamos

non zeno

y
robus

4(2)[ge(d) goatocholo
ydabasso

Methods / Line search / Inexact line search

This strategy of inexact line search works well in practice, as well as it has the following

geometric interpretation:

Let’s consider the following scalar function while being at a specific point of :

consider first order approximation of :

A popular inexact line search condition stipulates that should first of all give sufficient

decrease in the objective function , as measured by the following inequality:

for some constant . (Note, that stands for the first order Taylor

approximation of). This is also called Armijo condition. The problem of this

condition is, that it could accept arbitrary small values , which may slow down solution

of the problem. In practice, is chosen to be quite small, say .

To rule out unacceptably short steps one can introduce a second requirement:

for some constant , where is a constant from Armijo condition. Note that

the left-handside is simply the derivative , so the curvature condition ensures

that the slope of at the target point is greater than times the initial slope

. Typical values of for Newton or quasi-Newton method. The

sufficient decrease and curvature conditions are known collectively as the Wolfe

conditions.

Sufficient decrease
xk

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

ϕ(α)

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

α

f

f(xk − α∇f(xk)) ≤ f(xk) − c1 ⋅ α∇f(xk)⊤∇f(xk)

c1 ∈ (0, 1) c1 = 1
ϕ(α)

α

c1 c1 ≈ 10−4

Curvature condition

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

c2 ∈ (c1, 1) c1

∇αϕ(α)
ϕ(α) c2

∇αϕ(α)(0) c2 ≈ 0.9

Let’s consider also 2 linear scalar functions :

and

Note, that Goldstein-Armijo conditions determine the location of the function

between and . Typically, we choose and , while

.

f(xk)

𝜙1(η) η*

𝜙2(η)

η

𝜙 η
𝜙 η

0

Numerical Optimization by J.Nocedal and S.J.Wright.

Interactive Wolfe Line Search Example by fmin library.

Goldstein conditions
ϕ1(α), ϕ2(α)

ϕ1(α) = f(xk) − c1α∥∇f(xk)∥2

ϕ2(α) = f(xk) − c2α∥∇f(xk)∥2

ϕ(α)
ϕ1(α) ϕ2(α) c1 = ρ c2 = 1 − ρ

ρ ∈ (0.5, 1)

References
•

•

