
Zero order methods. Gradient free
optimization. Global optimization

Шпаргалка по результатам в безградиентной оптимизации
RL и эволюционные алгоритмы
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 Optuna quickstart
Демонстрация медленности методов нулевого порядка

Open in ColabOpen in Colab

 Подбор гиперпараметров модели машинного обучения в Keras с помощью Optuna
A Tutorial on Zero-Order Optimization
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1 Problem

Suppose, we have  points in  Euclidian space (for simplicity, we’ll consider and plot case with ). Let’s imagine, that these points are
nothing else but houses in some 2d village. Salesman should find the shortest way to go through the all houses only once.

That is, very simple formulation, however, implies  - hard problem with the factorial growth of possible combinations. The goal is to minimize
the following cumulative distance:

where  is the -th point from  and  stands for the - dimensional vector of indicies, which describes the order of path. Actually, the
problem could be formulated as an LP problem, which is easier to solve.

2 Genetic (evolution) algorithm

Our approach is based on the famous global optimization algorithm, known as evolution algorithm. ### Population and individuals Firstly, we
need to generate the set of random solutions as an initialization. We will call a set of solutions  as population, while each solution is
called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the houses. The creature, that reflects the shortest
path length among the others will be used as an output of an algorithm at the current iteration (generation).

Applications > Travelling salesman problem

Travelling salesman problem

N Rd d = 2

Illustration
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2.1 Crossing procedure

    
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Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we should formulate the mapping, that takes two
creature vectors as an input and returns its o!spring, which inherits parents properties, while remaining consistent. We will use ordered crossover
as such procedure.

In order to give our algorithm some ability to escape local minima, we provide it with mutation procedure. We simply swap some houses in an
individual vector. To be more accurate, we define mutation rate (say, ). On the one hand, the higher the rate, the less stable the population is,
on the other, the smaller the rate, the more o"en algorithm gets stuck in the local minima. We choose  individuals and in
each case swap random  digits.

At the end of the iteration we have increased population (due to crossing results), then we just calculate total path distance to each individual and
select top  of them.
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Illustration

2.2 Mutation

0.05
mutation rate ⋅ n

mutation rate ⋅ N

2.3 Selection

n

Illustration

http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx


In general, for any , where  is the number of dimensions in the Euclidean space, there is a polynomial-time algorithm that finds a tour of
length at most  times the optimal for geometric instances of TSP in

3 Code

Open In Colab

4 References

General information about genetic algorithms
Wiki

Illustration
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1 Lipschitz constant and robustness to a small perturbation

It was observed, that small perturbation in Neural Network input could lead to significant errors, i.e. misclassifications.

Lipschitz constant bounds the magnitude of the output of a function, so it cannot change drastically with a slight change in the input

Note, that a variety of feed-forward neural networks could be represented as a series of linear transformations, followed by some nonlinear
function (say, ):

where  is the number of layers,  - non-linear activation function,  - linear layer.

2 Estimating Lipschitz constant of a neural network

An everywhere di!erentiable function  is Lipschitz continuous with  if and only if it has bounded first derivative.

Applications > Neural network Lipschitz constant

Neural network Lipschitz constant

Typical illustration of adversarial attacks in image domain. Source

∥NN (image) − NN (image + ε)∥ ≤ L ∥ε∥NN
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Theorem
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Theorem

    
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If , then 

Therefore, we can bound the Lipschitz constant of a neural network:

Let’s consider one the simplest non-liear activation function.

Its Lipschitz  constant equals to , because:

What is the Lipschitz constant of a linear layer of neural network

3 How to compute ?

Let  – SVD of the matrix . Then

For , computing SVD is .

Time measurements with jax and Google colab CPU.

10 100 1000 5000

Time 38.7 µs 3.04 ms 717 ms 1min 21s

Memory for  in fp32 0.4 KB 40 KB 4 MB 95 MB

Works only for small linear layers.

In this notebook we will try to estimate Lipschitz constant of some convolutional layer of a Neural Network.

f = g ∘1 g2 L ≤f L Lg1 g2

L ≤NN L … L L … Lf1 fL w1 wL

Example

f(x) = ReLU(x)

Lf 1

∥f(x) − f(y)∥ ≤ 1∥x − y∥

Question
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4 Convolutional layer

Suppose, that we have an input  and the convolutional layer  with the filter size . Here we assume, that  - are the indices of pixels
of the kernel, while  are the indices of pixels of the output.

While multichannel convolution could be written in the following form:

where

 – convolution kernel
 – filter size

 – number of input channels (e.g., 3 for RGB)
 – number of output channels.

It is easy to see, that the output of the multichannel convolution operation is linear w.r.t. the input , which actually means, that one can write it
as matvec:

What is the size of the matrix  in this case, if the input image is square of size ?

If the image size is , number if input and output channels are , then . Storing this matrix in fp32
requW^T W x_kires approximately 40 Gb of RAM.

It seems, that computing  is almost impossible, isn’t it?

5 Power method for computing the largest singular value

Since we are interested in the largest singular value and

Animation of Convolution operation. Source
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Example
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https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html


we can apply the power method

6 Code
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7 References

Maxim Rakhuba’s lecture on Matrix and tensor methods in ML.
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