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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
h, ∥h∥2 = 1:

f(x + αh) = f(x) + α⟨f ′(x), h⟩ + o(α)

We want h to be a decreasing direction:

f(x + αh) < f(x)

f(x) + α⟨f ′(x), h⟩ + o(α) < f(x)

and going to the limit at α → 0:

⟨f ′(x), h⟩ ≤ 0

Also from Cauchy–Bunyakovsky–Schwarz inequality:

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2

⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

Thus, the direction of the antigradient

h = − f ′(x)
∥f ′(x)∥2

gives the direction of the steepest local decreasing of the function f .
The result of this method is

xk+1 = xk − αf ′(xk)
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Gradient flow ODE
Let’s consider the following ODE, which is referred as Gradient Flow equation.

dx

dt
= −f ′(x(t)) (GF)

and discretize it on a uniform grid with α step:

xk+1 − xk

α
= −f ′(xk),

where xk ≡ x(tk) and α = tk+1 − tk - is the grid step.
From here we get the expression for xk+1

xk+1 = xk − αf ′(xk),

which is exactly gradient descent.
Open In Colab ♣
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Necessary local minimum condition

f ′(x) = 0
− ηf ′(x) = 0
x − ηf ′(x) = x

xk − ηf ′(xk) = xk+1

Gradient Descent roots v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Minimizer of Lipschitz parabola
If a function f : Rn → R is continuously differentiable and
its gradient satisfies Lipschitz conditions with constant L,
then ∀x, y ∈ Rn:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2,

which geometrically means, that if we’ll fix some point
x0 ∈ Rn and define two parabolas:

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2 ∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2 ∥x − x0∥2.

Then

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.

Figure 2: Illustration

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)

This way leads to the 1
L

stepsize choosing. However,
often the L constant is not known.
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Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate α:
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Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
Interesting theoretical property of this method is that each following iteration is orthogonal
to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk+1)⊤∇f(xk) = 0
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Convergence rates

min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

smooth convex smooth & convex smooth & strongly convex (or PL)

∥∇f(xk)∥2 ≈ O
( 1

k

)
f(xk)−f∗ ≈ O

(
1√
k

)
f(xk) − f∗ ≈ O

( 1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)
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Gradient Descent convergence. Smooth convex case
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Gradient Descent convergence. Smooth µ-strongly convex case
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Gradient Descent convergence. Polyak-Lojasiewicz case
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