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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hs [Ihll2 = 1:
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hs [Ihll2 = 1:

fa+ah) = f(z) + alf'(x),h) + o(a)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hs [Ihll2 = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hs [Ihll2 = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

e =1 7))

W < (1 @) 2[Rl
(f'(z),h)

1" @)ll211Rll2 = =1 (@)l

<
> —
flz+ah) = f(z) +a{f'(z),h) + o(a)

We want & to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

P [l = 1: (@), )] < (1 @)llalIAl2
(@) k) = 17 @) allkll> = — 1 @)

Thus, the direction of the antigradient

L )
Jw+ah) < f(x) 17

gives the direction of the steepest local decreasing of the function f.

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want & to be a decreasing direction:

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

P [l = 1: (@), )] < (1 @)llalIAl2
(@) k) = 17 @) allkll> = — 1 @)

Thus, the direction of the antigradient

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want & to be a decreasing direction:

L )
f(z+ah) < f(z) IF @)
gives the direction of the steepest local decreasing of the function f.
f(@) + alf' (z),h) + o(a) < f(z) The result of this method is
and going to the limit at a« — 0: Tep1 = zk — oof (zk)

(f'(x),h) <0
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Gradient flow ODE

Let’s consider the following ODE, which is referred as Gradient Flow equation.

dx ,
& = )
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Gradient flow ODE

Let’s consider the following ODE, which is referred as Gradient Flow equation.

dx ,
& = )

and discretize it on a uniform grid with o step:

Tk+1 — Tk
+T = —f/(:[jk)’
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Gradient flow ODE

Let’s consider the following ODE, which is referred as Gradient Flow equation.

dx ,
— =— t GF
= 1) (GF)
and discretize it on a uniform grid with o step:
Tk4+1 — Tk Y
— = f=),

where z;, = z(t;) and o = tg4+1 — ty - is the grid step.
From here we get the expression for xx41

Toy1 =z — oof (zk),

which is exactly gradient descent.
Open In Colab &
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Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.

dx ,
_ = — t
=~ (a(t)
and discretize it on a uniform grid with o step:
Tht1 — T
SR T TR — (),
@

where z;, = z(t;) and o = tg4+1 — ty - is the grid step.
From here we get the expression for xx41

Try1 =k — af (wr),

which is exactly gradient descent.
Open In Colab &
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Trajectories with Contour Plot

e Gradient Descent with step 1.0e-0:
4§ — Gradient Flow ODE
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Figure 1: Gradient flow
trajectory
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Necessary local minimum condition

fi@)=0
—nf'(z) =0
z—nf(z) ==

o —nf'(zk) = Tt
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 — 20) = 2z — o,

Balx) = f(20) + (V f(z0), 7 — 70) + = |lo ol .
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 — 20) = 2z — o,
Balx) = f(20) + (V f(z0), 7 — 70) + = |lo ol .
Then

$1(z) < f(x) < ¢o2(z) Vo eR™
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:
L 2
[f(y) = f(2) = (Vf(2),y )| < S lly — =l

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 — 20) = 2z — o,
Balx) = f(20) + (V f(z0), 7 — 70) + = |lo ol .
Then

$1(z) < f(x) < ¢o2(z) Vo eR™

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:
L 2
[f(y) = f(2) = (Vf(2),y )| < S lly — =l

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 — 20) = 2z — o,
Balx) = f(20) + (V f(z0), 7 — 70) + = |lo ol .
Then

$1(z) < f(x) < ¢o2(z) Vo eR™

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,

then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point

zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 — 20) = 2z — o,

Balx) = f(20) + (V f(z0), 7 — 70) + = |lo ol .

Then

P1(z) < f(z) < ¢2(x)

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its

minimum.
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p1(zr)

Tk Th41 z

Figure 2: lllustration

V¢2($) =0
Vf(zo) + L(z* —x0) =0

. 1
x" =x0 — EVf(xo)
1
Tht+1 = Tk — va(xk)

1

This way leads to the + stepsize choosing. However

L

often the L constant is not known.

0
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Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate a:

Loss value 0.87

w1 0.50, w»p 3.00
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f — min
Tz Convergence
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Exact line search aka steepest descent
a = arg min f(zry1) = arg min f(zr — aV f(zk))
a€Rt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
Interesting theoretical property of this method is that each following iteration is orthogonal

to the previous one:

oy = arg min f(zr — aVf(zk))
a€RT

Optimality conditions:

Vf(zhe1) VE(zr) =0

Figure 3: Steepest
Descent

Open In Colab &
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Convergence rates

min f(z) Trpt1 = Tk — oV f(Tk)
zERM
smooth convex smooth & convex smooth & strongly convex (or PL)

sl =0(3)  rw-rxo(g) fw-rxo(})  le-er~o((1-4))
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Gradient Descent convergence. Smooth convex case
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Gradient Descent convergence. Smooth j-strongly convex case
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Gradient Descent convergence. Polyak-Lojasiewicz case
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