Gradient Descent

Daniil Merkulov

Optimization methods. MIPT

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{array}{r}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{array}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Thus, the direction of the antigradient

$$
h=-\frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|_{2}}
$$

gives the direction of the steepest local decreasing of the function f.

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction $h,\|h\|_{2}=1$:

$$
f(x+\alpha h)=f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)
$$

We want h to be a decreasing direction:

$$
\begin{gathered}
f(x+\alpha h)<f(x) \\
f(x)+\alpha\left\langle f^{\prime}(x), h\right\rangle+o(\alpha)<f(x)
\end{gathered}
$$

and going to the limit at $\alpha \rightarrow 0$:

$$
\left\langle f^{\prime}(x), h\right\rangle \leq 0
$$

Also from Cauchy-Bunyakovsky-Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x), h\right\rangle\right| & \leq\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2} \\
\left\langle f^{\prime}(x), h\right\rangle & \geq-\left\|f^{\prime}(x)\right\|_{2}\|h\|_{2}=-\left\|f^{\prime}(x)\right\|_{2}
\end{aligned}
$$

Thus, the direction of the antigradient

$$
h=-\frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|_{2}}
$$

gives the direction of the steepest local decreasing of the function f. The result of this method is

$$
x_{k+1}=x_{k}-\alpha f^{\prime}\left(x_{k}\right)
$$

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$
\begin{equation*}
\frac{d x}{d t}=-f^{\prime}(x(t)) \tag{GF}
\end{equation*}
$$

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$
\begin{equation*}
\frac{d x}{d t}=-f^{\prime}(x(t)) \tag{GF}
\end{equation*}
$$

and discretize it on a uniform grid with α step:

$$
\frac{x_{k+1}-x_{k}}{\alpha}=-f^{\prime}\left(x_{k}\right)
$$

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$
\begin{equation*}
\frac{d x}{d t}=-f^{\prime}(x(t)) \tag{GF}
\end{equation*}
$$

and discretize it on a uniform grid with α step:

$$
\frac{x_{k+1}-x_{k}}{\alpha}=-f^{\prime}\left(x_{k}\right)
$$

where $x_{k} \equiv x\left(t_{k}\right)$ and $\alpha=t_{k+1}-t_{k}$ - is the grid step. From here we get the expression for x_{k+1}

$$
x_{k+1}=x_{k}-\alpha f^{\prime}\left(x_{k}\right)
$$

which is exactly gradient descent. Open In Colab \&

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.

$$
\begin{equation*}
\frac{d x}{d t}=-f^{\prime}(x(t)) \tag{GF}
\end{equation*}
$$

Figure 1: Gradient flow trajectory

Necessary local minimum condition

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& -\eta f^{\prime}(x)=0 \\
& x-\eta f^{\prime}(x)=x \\
& x_{k}-\eta f^{\prime}\left(x_{k}\right)=x_{k+1}
\end{aligned}
$$

Minimizer of Lipschitz parabola

 If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

Minimizer of Lipschitz parabola

 If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2}, \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2} \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Figure 2: Illustration

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n}
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Minimizer of Lipschitz parabola

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then $\forall x, y \in \mathbb{R}^{n}$:

$$
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \leq \frac{L}{2}\|y-x\|^{2}
$$

which geometrically means, that if we'll fix some point $x_{0} \in \mathbb{R}^{n}$ and define two parabolas:

$$
\begin{aligned}
& \phi_{1}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle-\frac{L}{2}\left\|x-x_{0}\right\|^{2} \\
& \phi_{2}(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{L}{2}\left\|x-x_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
\phi_{1}(x) \leq f(x) \leq \phi_{2}(x) \quad \forall x \in \mathbb{R}^{n} .
$$

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its minimum.

Figure 2: Illustration

$$
\begin{aligned}
& \nabla \phi_{2}(x)=0 \\
& \nabla f\left(x_{0}\right)+L\left(x^{*}-x_{0}\right)=0 \\
& x^{*}=x_{0}-\frac{1}{L} \nabla f\left(x_{0}\right) \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)
\end{aligned}
$$

This way leads to the $\frac{1}{L}$ stepsize choosing. However, often the L constant is not known.

Convergence of Gradient Descent algorithm

Heavily depends on the choice of the learning rate α :

Loss value 0.87

Exact line search aka steepest descent

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k+1}\right)=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. Interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$
\alpha_{k}=\arg \min _{\alpha \in \mathbb{R}^{+}} f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

Optimality conditions:

$$
\nabla f\left(x_{k+1}\right)^{\top} \nabla f\left(x_{k}\right)=0
$$

Figure 3: Steepest Descent

Open In Colab

Convergence rates

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

smooth

convex
smooth \& convex
smooth \& strongly convex (or PL)
$\left\|\nabla f\left(x_{k}\right)\right\|^{2} \approx \mathcal{O}\left(\frac{1}{k}\right) \quad f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \quad f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{k}\right) \quad\left\|x_{k}-x^{*}\right\|^{2} \approx \mathcal{O}\left(\left(1-\frac{\mu}{L}\right)^{k}\right)$

Gradient Descent convergence. Smooth convex case

Gradient Descent convergence. Smooth μ-strongly convex case

Gradient Descent convergence. Polyak-Lojasiewicz case

