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Convergence rates

min f(z) Trpt1 = Tk — oV f(Tk)
zERM
smooth convex smooth & convex smooth & strongly convex (or PL)

sl =0(3)  rw-rxo(g) fw-rxo(})  le-er~o((1-4))
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Coordinate shift for strongly convex quadratics
Consider the following quadratic optimization problem:

1
min f(z) = min =z’ Az — b z + ¢, where A € S%,.
zeRd zeRd 2
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1
min f(z) = min =z Az —b' 2 + ¢, where A € ST .
zeRd zeRd 2

® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
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® Secondly, we have a spectral decomposition of the matrix A:

A= QAQ"
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® Firstly, without loss of generality we can set ¢ = 0, which will or affect
optimization process.
® Secondly, we have a spectral decomposition of the matrix A:

A= QAQ"

® | et’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let # = QT (x — z*), where z* is the minimum point of
initial function, defined by Az™ = b. At the same time x = Q% + z™.
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Strongly convex quadratics
1

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the )
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Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the )
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xf"{l =1-a )\ ) a:(z)

k

Let's use constant stepsize o = a.. Convergence

condition:
pla) =max |1 —aly)| <1
K3

Remember, that Amin = ¢t > 0, Amax = L > p.
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2 =gk aka(xk) =" — aFAZF best (lowest) convergence rate

= (I -a"A)z”
xf*{l = (1 — a"A))x(y) For i-th coordinate p= min pla) = minmax 11— ar@]
xf";lz(l—a Aiy)* a:(l) :m(jn{ll—au\,ll—aLl}

k o 1—-a'u=a'L-1

Let's use constant stepsize o = a.. Convergence

condition: o = 2 ot = L—pu
pla) =max |1 —aly)| <1 pw+L L+pu
K k
Remember, that Amin =t > 0, Amax = L > p. 2 — L—-p 20
L+n
1 —apl <1 1—aL]<1
—-1<l—apu<l1 —-1<1l1—-alL<1
2 2
a< — ap >0 a< — al >0
m L

a < % is needed for convergence.

‘f -+ ].".}I; Convergence proofs 0 O
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Strongly convex quadratics

Now we can work with the function f(z) = $2” Az with * = 0 without loss of generality (drop the hat from the )

T = 2F — oVt = 2F — oFAL”

= (I -a"A)z”
xf*{l =(1- ak>\ ; )xﬁ) For i-th coordinate
x?";l =1-a )\ ) a:(l)

¥ — o. Convergence

Let's use constant stepsize a
condition:

pla) =max |1 —aly)| <1
K3

Remember, that Amin = ¢t > 0, Amax = L > p.

1 —apl <1 1—aL]<1

—-1<l—apu<l1 —-1<1l1—-alL<1

2 2
a< — ap >0 a< — al >0
m L

a < % is needed for convergence.

‘ f — min
Tz Convergence proofs

Now we would like to choose « in order to choose the
best (lowest) convergence rate

p" = min p(a) = minmax |1 — ag)|
[e3 [e3 7
— min {|1 — ol |1 — aL]}
o 1—-a'u=a'L-1
« 2 « L—up
= p =
pw+L

T L+u

k 2k
k+1 _ L—pu 0 41y _ L—p 0
o (2) e = (52)
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Strongly convex quadratics

sl — 1 - 2 where k = % is sometimes called condition

So, we have a linear convergence in domain with rate —=
s K+l R+l
number of the quadratic problem.

Iterations to decrease function gap 10 times

K p Iterations to decrease domain gap 10 times

1.1 0.05 1 1
2 0.33 3 2
5 0.67 6 3
10 0.82 12 6
50 0.96 58 29
100 0.98 116 58
500 0.996 576 288
1000 0.998 1152 576
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some p > 0,

IVF @) = 2u(f(2) — f7) Va
It is interesting, that Gradient Descent algorithm has
The following functions satisfy the PL-condition, but are not convex. ®Link to the code

f(z) = 2 4 3sin’(z)

Function, that satisfies
Polyak- Lojasiewicz condition

— f(x) = x2 + 3sin?(x)

-3 -2 -1 0 1 2 3
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some p > 0,

IVF @) = 2u(f(2) — f7) Va
It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. ®Link to the code

(y —sinx)?
2

f(z) = 2 4 3sin’(z) fla,y) =

Function, that satisfies Non-convex PL function
Polyak- Lojasiewicz condition

—— f(x) = x2 + 3sin?(x)

4.0
35
3.0
25
2.0
15
10
05

-3 -2 -1 0 1 2 3
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Gradient Descent convergence. Polyak-Lojasiewicz case

Theorem

Consider the Problem

f(z) — min
z€ERC

and assume that f is u-Polyak-tojasiewicz and L-smooth, for some L > pu > 0.

Consider (z')sen a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize
satisfying 0 < o < +. Then:

f@h) =< (= ap)'(f(a°) = ).

‘f -+ ].".}2 Convergence proofs 0 O
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Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

P < Fat) + (VFat), 2t —at) + 2ttt

= f&") — Al VG + LoV 5@
= f@") = 5 (2~ La) [Vf(a")|?
< @) = SIVHEDIP

where in the last inequality we used our hypothesis on the stepsize that oL < 1.
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Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

P < Fat) + (VFat), 2t —at) + 2ttt

= f&") — Al VG + LoV 5@
= f@") = 5 (2~ La) [Vf(a")|?
< @) = SIVHEDIP

where in the last inequality we used our hypothesis on the stepsize that oL < 1.

We can now use the Polyak-Lojasiewicz property to write:
F@™) < fa") —ap(f(z') = 1)
The conclusion follows after subtracting f* on both sides of this inequality, and using recursion.
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Gradient Descent convergence. Smooth convex case

Theorem

Consider the Problem

f(z) — min
z€RA

and assume that f is convex and L-smooth, for some L > 0.

Let (z%):en be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a
stepsize satisfying 0 < a < % Then, for all z* € argmin f, for all t € N we have that

l2® — 2"

F@) - < =g
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Gradient Descent convergence. Smooth convex case

‘f -+ 7"171 Convergence proofs
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Gradient Descent convergence. Smooth p-strongly convex case

Theorem

Consider the Problem

f(z) = min
zcRd

and assume that f is p-strongly convex and L-smooth, for some L > > 0. Let (z%)en be the sequence of

iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying 0 < o < %

Then, for z* = argmin f and for all t € N:

2" =2 |* < (1= ap) T 2” — "%
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Gradient Descent convergence. Smooth j-strongly convex case
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Gradient Descent for Linear Least Squares aka Linear Regression

Linear least squares. Linear least squares.
.®

DR
10 % %

5 e R »

Function value
0
.
<o,
.,
Function value

-10.0 -75 -50 -25 00 25 50 75 100 -100 =75 =50 -25 00 25 50 75 100
x x

Figure 4: lllustration

In a least-squares, or linear regression, problem, we have measurements X € R™*"™ and y € R™ and seek a vector
0 € R™ such that X6 is close to y. Closeness is defined as the sum of the squared differences:

m

> (@ 0—y:)* =X0 -yl — min
OcR™

=1

For example, we might have a dataset of m users, each represented by n features. Each row &; of X is the features
for user 4, while the corresponding entry y; of ¥ is the measurement we want to predict from 2, such as ad
spending. The prediction is given by x; 6.
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Linear Least Squares aka Linear Regression

1. Is this problem convex? Strongly convex?

‘f -+ 1’11'}2 Convergence proofs
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Linear Least Squares aka Linear Regression !

1. Is this problem convex? Strongly convex?
2. What do you think about convergence of Gradient Descent for this problem?

1Take a look at the @example of real-world data linear least squares problem
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lo-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an
l2-penality, also known as Tikhonov regularization, l>-regularization, or weight decay.

X0 —yl2+ £)60)2 - mi
[ yllz + 5116l — min

Note: With this modification the objective is u-strongly convex again.

Take a look at the ®code
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