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Previously
• Gradient Descent

• Steepest descent
• Convergence rates (no proof)
• If f : Rd → R is L-smooth then for all x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2.

• Let f : Rd → R be a twice differentiable L-smooth function. Then, for all x ∈ Rd, for
every eigenvalue λ of ∇2f(x), we have

|λ| ≤ L.
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Convergence rates

min
x∈Rn

f(x) xk+1 = xk − αk∇f(xk)

smooth convex smooth & convex smooth & strongly convex (or PL)

∥∇f(xk)∥2 ≈ O
( 1

k

)
f(xk)−f∗ ≈ O

(
1√
k

)
f(xk) − f∗ ≈ O

( 1
k

)
∥xk − x∗∥2 ≈ O

((
1 − µ

L

)k
)

Convergence proofs v § } 3
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Coordinate shift for strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

• Firstly, without loss of generality we can set c = 0, which will or affect
optimization process.

• Secondly, we have a spectral decomposition of the matrix A:

A = QΛQT

• Let’s show, that we can switch coordinates in order to make an analysis a
little bit easier. Let x̂ = QT (x − x∗), where x∗ is the minimum point of
initial function, defined by Ax∗ = b. At the same time x = Qx̂ + x∗.

f(x̂) = 1
2(Qx̂ + x∗)⊤A(Qx̂ + x∗) − b⊤(Qx̂ + x∗)

= 1
2 x̂T QT AQx̂ + (x∗)T AQx̂ + 1

2(x∗)T A(x∗)T − bT Qx̂ − bT x∗

= 1
2 x̂T Λx̂
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Strongly convex quadratics
Now we can work with the function f(x) = 1

2 xT Λx with x∗ = 0 without loss of generality (drop the hat from the x̂)

xk+1 = xk − αk∇f(xk)

= xk − αkΛxk

= (I − αkΛ)xk

xk+1
(i) = (1 − αkλ(i))xk

(i) For i-th coordinate

xk+1
(i) = (1 − αkλ(i))kx0

(i)

Let’s use constant stepsize αk = α. Convergence
condition:

ρ(α) = max
i

|1 − αλ(i)| < 1

Remember, that λmin = µ > 0, λmax = L ≥ µ.

|1 − αµ| < 1
− 1 < 1 − αµ < 1

α <
2
µ

αµ > 0

|1 − αL| < 1
− 1 < 1 − αL < 1

α <
2
L

αL > 0

α < 2
L

is needed for convergence.

Now we would like to choose α in order to choose the
best (lowest) convergence rate

ρ∗ = min
α

ρ(α) = min
α

max
i

|1 − αλ(i)|

= min
α

{|1 − αµ|, |1 − αL|}

α∗ : 1 − α∗µ = α∗L − 1

α∗ = 2
µ + L

ρ∗ = L − µ

L + µ

xk+1 =
(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)

Convergence proofs v § } 5
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Now we would like to choose α in order to choose the
best (lowest) convergence rate
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|1 − αλ(i)|
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L + µ
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(

L − µ

L + µ

)k

x0 f(xk+1) =
(

L − µ

L + µ

)2k

f(x0)
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Strongly convex quadratics

So, we have a linear convergence in domain with rate κ−1
κ+1 = 1 − 2

κ+1 , where κ = L
µ

is sometimes called condition
number of the quadratic problem.

κ ρ Iterations to decrease domain gap 10 times Iterations to decrease function gap 10 times
1.1 0.05 1 1
2 0.33 3 2
5 0.67 6 3
10 0.82 12 6
50 0.96 58 29
100 0.98 116 58
500 0.996 576 288
1000 0.998 1152 576
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. 3Link to the code

f(x) = x2 + 3 sin2(x)
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Figure 3: PL function
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Gradient Descent convergence. Polyak-Lojasiewicz case

Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is µ-Polyak-Łojasiewicz and L-smooth, for some L ≥ µ > 0.
Consider (xt)t∈N a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize
satisfying 0 < α ≤ 1

L
. Then:

f(xt) − f∗ ≤ (1 − αµ)t(f(x0) − f∗).
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Gradient Descent convergence. Polyak-Lojasiewicz case
We can use L-smoothness, together with the update rule of the algorithm, to write

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩ + L

2 ∥xt+1 − xt∥2

= f(xt) − α∥∇f(xt)∥2 + Lα2

2 ∥∇f(xt)∥2

= f(xt) − α

2 (2 − Lα) ∥∇f(xt)∥2

≤ f(xt) − α

2 ∥∇f(xt)∥2,

where in the last inequality we used our hypothesis on the stepsize that αL ≤ 1.

We can now use the Polyak-Lojasiewicz property to write:

f(xt+1) ≤ f(xt) − αµ(f(xt) − f∗).

The conclusion follows after subtracting f∗ on both sides of this inequality, and using recursion.
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Gradient Descent convergence. Smooth convex case

Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is convex and L-smooth, for some L > 0.
Let (xt)t∈N be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a
stepsize satisfying 0 < α ≤ 1

L
. Then, for all x∗ ∈ argmin f , for all t ∈ N we have that

f(xt) − f∗ ≤ ∥x0 − x∗∥2

2αt
.
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Gradient Descent convergence. Smooth convex case
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Gradient Descent convergence. Smooth µ-strongly convex case

Theorem

Consider the Problem

f(x) → min
x∈Rd

and assume that f is µ-strongly convex and L-smooth, for some L ≥ µ > 0. Let (xt)t∈N be the sequence of
iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying 0 < α ≤ 1

L
.

Then, for x∗ = argmin f and for all t ∈ N:

∥xt+1 − x∗∥2 ≤ (1 − αµ)t+1∥x0 − x∗∥2.
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Gradient Descent convergence. Smooth µ-strongly convex case
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Gradient Descent for Linear Least Squares aka Linear Regression

Figure 4: Illustration

In a least-squares, or linear regression, problem, we have measurements X ∈ Rm×n and y ∈ Rm and seek a vector
θ ∈ Rn such that Xθ is close to y. Closeness is defined as the sum of the squared differences:

m∑
i=1

(x⊤
i θ − yi)2 = ∥Xθ − y∥2

2 → min
θ∈Rn

For example, we might have a dataset of m users, each represented by n features. Each row x⊤
i of X is the features

for user i, while the corresponding entry yi of y is the measurement we want to predict from x⊤
i , such as ad

spending. The prediction is given by x⊤
i θ.
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?

2. What do you think about convergence of Gradient Descent for this problem?

1Take a look at the 3example of real-world data linear least squares problem
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l2-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an
l2-penality, also known as Tikhonov regularization, l2-regularization, or weight decay.

∥Xθ − y∥2
2 + µ

2 ∥θ∥2
2 → min

θ∈Rn

Note: With this modification the objective is µ-strongly convex again.

Take a look at the 3code
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