Gradient Descent. Convergence rates

Daniil Merkulov

Optimization methods. MIPT

• Gradient Descent

Figure 1: Steepest Descent

- Gradient Descent
- Steepest descent

Figure 1: Steepest Descent

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)

Figure 1: Steepest Descent

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^{d} \to \mathbb{R}$ is *L*-smooth then for all $x, y \in \mathbb{R}^{d}$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Figure 1: Steepest Descent

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^{\overline{d}} \to \mathbb{R}$ is L-smooth then for all $x, y \in \mathbb{R}^{d}$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2.$$

• Let $f : \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable *L*-smooth function. Then, for all $x \in \mathbb{R}^d$, for every eigenvalue λ of $\nabla^2 f(x)$, we have

$$|\lambda| \le L.$$

Figure 1: Steepest Descent

Convergence rates

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

smooth	convex	smooth & convex	smooth & strongly convex (or PL)
$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{1}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{k}\right)$	$\ x_k - x^*\ ^2 pprox \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k ight)$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

• Firstly, without loss of generality we can set c = 0, which will or affect optimization process.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c = 0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c = 0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c = 0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let
 x̂ = Q^T(x - x^{*}), where x^{*} is the minimum point of initial function, defined by Ax^{*} = b. At the same time x = Qx̂ + x^{*}.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*)$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c = 0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let
 x̂ = Q^T(x - x^{*}), where x^{*} is the minimum point of initial function, defined by Ax^{*} = b. At the same time x = Qx̂ + x^{*}.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*)$$
$$= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + (x^*)^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q\hat{x} - b^T x$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c = 0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let
 x̂ = Q^T(x - x^{*}), where x^{*} is the minimum point of initial function, defined by Ax^{*} = b. At the same time x = Qx̂ + x^{*}.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*)$$

= $\frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + (x^*)^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q\hat{x} - b^T x$
= $\frac{1}{2} \hat{x}^T \Lambda \hat{x}$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 $|1 - \alpha \mu| < 1$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$|1 - \alpha \mu| < 1$$

- 1 < 1 - $\alpha \mu < 1$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{split} |1-\alpha\mu| &< 1\\ -1 &< 1-\alpha\mu < 1\\ \alpha &< \frac{2}{\mu} \qquad \alpha\mu > 0 \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

 $f \to \min_{x,y,z}$ Convergence proofs

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

 $f \to \min_{x,y,z}$ Convergence proofs

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

 x_{ℓ}^{k}

 α

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to choose α in order to choose the $x^{k} - \alpha^{k} \nabla f(x^{k}) = x^{k} - \alpha^{k} \Lambda x^{k}$ x^{k+1} best (lowest) convergence rate

$$\begin{aligned} & \stackrel{(I)}{=} x^{k} - \alpha^{k} \nabla f(x^{k}) = x^{k} - \alpha^{k} \Lambda x^{k} \\ &= (I - \alpha^{k} \Lambda) x^{k} \\ \stackrel{(I)}{=} (1 - \alpha^{k} \lambda_{(i)}) x^{k}_{(i)} \text{ For } i\text{-th coordinate} \\ \stackrel{(I)}{=} (1 - \alpha^{k} \lambda_{(i)})^{k} x^{0}_{(i)} \end{aligned}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha)$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to choose α in order to choose the

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{ |1 - \alpha \mu|, |1 - \alpha L| \}$$
$$\alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1$$
$$\alpha^* = \frac{2}{\mu + L}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1$$
$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)} \\ &= \min_{\alpha} \{ |1 - \alpha \mu|, |1 - \alpha L| \} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu} \\ x^{k+1} &= \left(\frac{L - \mu}{L + \mu}\right)^k x^0 \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)})^k x^0_{(i)} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 α

$$\begin{split} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \\ \alpha < \frac{2}{L} & \text{is needed for convergence.} \end{split}$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L - \mu}{L + \mu}\right)^k x^0 \quad f(x^{k+1}) = \left(\frac{L - \mu}{L + \mu}\right)^{2k} f(x^0)$$

So, we have a linear convergence in domain with rate $\frac{\kappa-1}{\kappa+1} = 1 - \frac{2}{\kappa+1}$, where $\kappa = \frac{L}{\mu}$ is sometimes called *condition* number of the quadratic problem.

κ	ho	Iterations to decrease domain gap $10~\mathrm{times}$	Iterations to decrease function gap $10\ {\rm times}$
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\left\|\nabla f(x)\right\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. Chink to the code

 $f(x) = x^2 + 3\sin^2(x)$

 $\rightarrow \min$

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\left\|\nabla f(x)\right\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. PLink to the code

 $f(x) = x^2 + 3\sin^2(x)$

 $\rightarrow \min$

Non-convex PL function

7

Gradient Descent convergence. Polyak-Lojasiewicz case

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is μ -Polyak-Łojasiewicz and L-smooth, for some $L \ge \mu > 0$. Consider $(x^t)_{t \in \mathbb{N}}$ a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize

satisfying $0 < \alpha \leq \frac{1}{L}$. Then:

$$f(x^{t}) - f^{*} \le (1 - \alpha \mu)^{t} (f(x^{0}) - f^{*}).$$

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{t+1}) &\leq f(x^{t}) + \langle \nabla f(x^{t}), x^{t+1} - x^{t} \rangle + \frac{L}{2} \|x^{t+1} - x^{t}\|^{2} \\ &= f(x^{t}) - \alpha \|\nabla f(x^{t})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(x^{t})\|^{2} \\ &= f(x^{t}) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^{t})\|^{2} \\ &\leq f(x^{t}) - \frac{\alpha}{2} \|\nabla f(x^{t})\|^{2}, \end{split}$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{t+1}) &\leq f(x^{t}) + \langle \nabla f(x^{t}), x^{t+1} - x^{t} \rangle + \frac{L}{2} \|x^{t+1} - x^{t}\|^{2} \\ &= f(x^{t}) - \alpha \|\nabla f(x^{t})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(x^{t})\|^{2} \\ &= f(x^{t}) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^{t})\|^{2} \\ &\leq f(x^{t}) - \frac{\alpha}{2} \|\nabla f(x^{t})\|^{2}, \end{split}$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

We can now use the Polyak-Lojasiewicz property to write:

$$f(x^{t+1}) \le f(x^t) - \alpha \mu(f(x^t) - f^*).$$

The conclusion follows after subtracting f^* on both sides of this inequality, and using recursion.

Gradient Descent convergence. Smooth convex case

Theorem

Consider the Problem

 $f(x) \to \min_{x \in \mathbb{R}^d}$

and assume that f is convex and L-smooth, for some L > 0.

Let $(x^t)_{t\in\mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0 < \alpha \leq \frac{1}{L}$. Then, for all $x^* \in \operatorname{argmin} f$, for all $t \in \mathbb{N}$ we have that

$$f(x^{t}) - f^{*} \le \frac{\|x^{0} - x^{*}\|^{2}}{2\alpha t}$$

Gradient Descent convergence. Smooth convex case

Gradient Descent convergence. Smooth μ -strongly convex case

Theorem

Consider the Problem

 $f(x) \to \min_{x \in \mathbb{R}^d}$

and assume that f is μ -strongly convex and L-smooth, for some $L \ge \mu > 0$. Let $(x^t)_{t \in \mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0 < \alpha \le \frac{1}{L}$. Then, for $x^* = \operatorname{argmin} f$ and for all $t \in \mathbb{N}$:

$$||x^{t+1} - x^*||^2 \le (1 - \alpha \mu)^{t+1} ||x^0 - x^*||^2.$$

Gradient Descent convergence. Smooth μ -strongly convex case

Gradient Descent for Linear Least Squares aka Linear Regression

Figure 4: Illustration

In a least-squares, or linear regression, problem, we have measurements $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ and seek a vector $\theta \in \mathbb{R}^n$ such that $X\theta$ is close to y. Closeness is defined as the sum of the squared differences:

$$\sum_{i=1}^{m} (x_i^\top \theta - y_i)^2 = \|X\theta - y\|_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

For example, we might have a dataset of m users, each represented by n features. Each row x_i^{\top} of X is the features for user i, while the corresponding entry y_i of y is the measurement we want to predict from x_i^{\top} , such as ad spending. The prediction is given by $x_i^{\top} \theta$.

♥ O Ø 14

Linear Least Squares aka Linear Regression ¹

1. Is this problem convex? Strongly convex?

Linear Least Squares aka Linear Regression ¹

- 1. Is this problem convex? Strongly convex?
- 2. What do you think about convergence of Gradient Descent for this problem?

 $^{^1\}mathsf{Take}$ a look at the \clubsuit example of real-world data linear least squares problem

*l*₂-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an l_2 -penality, also known as Tikhonov regularization, l_2 -regularization, or weight decay.

$$\|X\theta - y\|_2^2 + \frac{\mu}{2} \|\theta\|_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

Note: With this modification the objective is μ -strongly convex again.

Take a look at the 🗬code

