Gradient Descent. Convergence rates

Daniil Merkulov

Optimization methods. MIPT

Previously

- Gradient Descent

Figure 1: Steepest Descent

Open In Colab

Previously

- Gradient Descent
- Steepest descent

Figure 1: Steepest Descent

Open In Colab \&

Previously

- Gradient Descent

- Convergence rates (no proof)

Previously

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth then for all $x, y \in \mathbb{R}^{d}$

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Figure 1: Steepest Descent

Open In Colab

Previously

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth then for all $x, y \in \mathbb{R}^{d}$

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a twice differentiable L-smooth function. Then, for all $x \in \mathbb{R}^{d}$, for
 every eigenvalue λ of $\nabla^{2} f(x)$, we have

$$
|\lambda| \leq L
$$

Figure 1: Steepest Descent

Open In Colab

Convergence rates

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

smooth

convex
smooth \& convex
smooth \& strongly convex (or PL)
$\left\|\nabla f\left(x_{k}\right)\right\|^{2} \approx \mathcal{O}\left(\frac{1}{k}\right) \quad f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \quad f\left(x_{k}\right)-f^{*} \approx \mathcal{O}\left(\frac{1}{k}\right) \quad\left\|x_{k}-x^{*}\right\|^{2} \approx \mathcal{O}\left(\left(1-\frac{\mu}{L}\right)^{k}\right)$

Coordinate shift for strongly convex quadratics

 Consider the following quadratic optimization problem:$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d} .
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A :

$$
A=Q \Lambda Q^{T}
$$

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A :

$$
A=Q \Lambda Q^{T}
$$

- Let's show, that we can switch coordinates in order to make an analysis a
 little bit easier. Let $\hat{x}=Q^{T}\left(x-x^{*}\right)$, where x^{*} is the minimum point of initial function, defined by $A x^{*}=b$. At the same time $x=Q \hat{x}+x^{*}$.

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A :

$$
A=Q \Lambda Q^{T}
$$

- Let's show, that we can switch coordinates in order to make an analysis a
 little bit easier. Let $\hat{x}=Q^{T}\left(x-x^{*}\right)$, where x^{*} is the minimum point of initial function, defined by $A x^{*}=b$. At the same time $x=Q \hat{x}+x^{*}$.

$$
f(\hat{x})=\frac{1}{2}\left(Q \hat{x}+x^{*}\right)^{\top} A\left(Q \hat{x}+x^{*}\right)-b^{\top}\left(Q \hat{x}+x^{*}\right)
$$

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A :

$$
A=Q \Lambda Q^{T}
$$

- Let's show, that we can switch coordinates in order to make an analysis a
 little bit easier. Let $\hat{x}=Q^{T}\left(x-x^{*}\right)$, where x^{*} is the minimum point of initial function, defined by $A x^{*}=b$. At the same time $x=Q \hat{x}+x^{*}$.

$$
\begin{aligned}
f(\hat{x}) & =\frac{1}{2}\left(Q \hat{x}+x^{*}\right)^{\top} A\left(Q \hat{x}+x^{*}\right)-b^{\top}\left(Q \hat{x}+x^{*}\right) \\
& =\frac{1}{2} \hat{x}^{T} Q^{T} A Q \hat{x}+\left(x^{*}\right)^{T} A Q \hat{x}+\frac{1}{2}\left(x^{*}\right)^{T} A\left(x^{*}\right)^{T}-b^{T} Q \hat{x}-b^{T} x^{*}
\end{aligned}
$$

Coordinate shift for strongly convex quadratics

Consider the following quadratic optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\min _{x \in \mathbb{R}^{d}} \frac{1}{2} x^{\top} A x-b^{\top} x+c, \text { where } A \in \mathbb{S}_{++}^{d}
$$

- Firstly, without loss of generality we can set $c=0$, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A :

$$
A=Q \Lambda Q^{T}
$$

- Let's show, that we can switch coordinates in order to make an analysis a
 little bit easier. Let $\hat{x}=Q^{T}\left(x-x^{*}\right)$, where x^{*} is the minimum point of initial function, defined by $A x^{*}=b$. At the same time $x=Q \hat{x}+x^{*}$.

$$
\begin{aligned}
f(\hat{x}) & =\frac{1}{2}\left(Q \hat{x}+x^{*}\right)^{\top} A\left(Q \hat{x}+x^{*}\right)-b^{\top}\left(Q \hat{x}+x^{*}\right) \\
& =\frac{1}{2} \hat{x}^{T} Q^{T} A Q \hat{x}+\left(x^{*}\right)^{T} A Q \hat{x}+\frac{1}{2}\left(x^{*}\right)^{T} A\left(x^{*}\right)^{T}-b^{T} Q \hat{x}-b^{T} x^{*} \\
& =\frac{1}{2} \hat{x}^{T} \Lambda \hat{x}
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k}
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate }
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
|1-\alpha \mu|<1
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{aligned}
& |1-\alpha \mu|<1 \\
& \quad-1<1-\alpha \mu<1
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{aligned}
& |1-\alpha \mu|<1 \\
& -1<1-\alpha \mu<1 \\
& \alpha<\frac{2}{\mu} \quad \alpha \mu>0
\end{aligned}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0
\end{array}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{aligned}
& |1-\alpha \mu|<1 \\
& -1<1-\alpha \mu<1 \\
& \alpha<\frac{2}{\mu} \quad \alpha \mu>0
\end{aligned}
$$

$$
|1-\alpha L|<1
$$

$$
-1<1-\alpha L<1
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$ Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\rho^{*}=\min _{\alpha} \rho(\alpha)
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\rho^{*}=\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right|
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\} \\
\alpha^{*} & : \quad 1-\alpha^{*} \mu=\alpha^{*} L-1
\end{aligned}
$$

$\alpha<\frac{2}{L}$ is needed for convergence.

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\} \\
\alpha^{*} & : 1-\alpha^{*} \mu=\alpha^{*} L-1 \\
\alpha^{*} & =\frac{2}{\mu+L}
\end{aligned}
$$

$$
L \text { is rieeaed ror convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\} \\
\alpha^{*} & : \quad 1-\alpha^{*} \mu=\alpha^{*} L-1 \\
\alpha^{*} & =\frac{2}{\mu+L} \quad \rho^{*}=\frac{L-\mu}{L+\mu}
\end{aligned}
$$

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\} \\
\alpha^{*} & : \quad 1-\alpha^{*} \mu=\alpha^{*} L-1 \\
\alpha^{*} & =\frac{2}{\mu+L} \quad \rho^{*}=\frac{L-\mu}{L+\mu} \\
x^{k+1} & =\left(\frac{L-\mu}{L+\mu}\right)^{k} x^{0}
\end{aligned}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L} \quad \alpha L>0
\end{array}
$$

Strongly convex quadratics

Now we can work with the function $f(x)=\frac{1}{2} x^{T} \Lambda x$ with $x^{*}=0$ without loss of generality (drop the hat from the \hat{x})

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \Lambda x^{k} \\
& =\left(I-\alpha^{k} \Lambda\right) x^{k} \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right) x_{(i)}^{k} \text { For } i \text {-th coordinate } \\
x_{(i)}^{k+1} & =\left(1-\alpha^{k} \lambda_{(i)}\right)^{k} x_{(i)}^{0}
\end{aligned}
$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$
\begin{aligned}
\rho^{*} & =\min _{\alpha} \rho(\alpha)=\min _{\alpha} \max _{i}\left|1-\alpha \lambda_{(i)}\right| \\
& =\min _{\alpha}\{|1-\alpha \mu|,|1-\alpha L|\} \\
\alpha^{*} & : \quad 1-\alpha^{*} \mu=\alpha^{*} L-1 \\
\alpha^{*} & =\frac{2}{\mu+L} \quad \rho^{*}=\frac{L-\mu}{L+\mu} \\
x^{k+1} & =\left(\frac{L-\mu}{L+\mu}\right)^{k} x^{0} \quad f\left(x^{k+1}\right)=\left(\frac{L-\mu}{L+\mu}\right)^{2 k} f\left(x^{0}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
|1-\alpha \mu|<1 & |1-\alpha L|<1 \\
-1<1-\alpha \mu<1 & -1<1-\alpha L<1 \\
\alpha<\frac{2}{\mu} \quad \alpha \mu>0 & \alpha<\frac{2}{L}
\end{array}
$$

Let's use constant stepsize $\alpha^{k}=\alpha$. Convergence condition:

$$
\rho(\alpha)=\max _{i}\left|1-\alpha \lambda_{(i)}\right|<1
$$

Remember, that $\lambda_{\min }=\mu>0, \lambda_{\max }=L \geq \mu$.

$$
\alpha<\frac{2}{L} \text { is needed for convergence. }
$$

Strongly convex quadratics

So, we have a linear convergence in domain with rate $\frac{\kappa-1}{\kappa+1}=1-\frac{2}{\kappa+1}$, where $\kappa=\frac{L}{\mu}$ is sometimes called condition number of the quadratic problem.

κ	ρ	Iterations to decrease domain gap 10 times	Iterations to decrease function gap 10 times
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

 convexityPL inequality holds if the following condition is satisfied for some $\mu>0$,

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x
$$

It is interesting, that Gradient Descent algorithm has
The following functions satisfy the PL-condition, but are not convex. PLink to the code

$$
f(x)=x^{2}+3 \sin ^{2}(x)
$$

Function, that satisfies
Polyak- Lojasiewicz condition

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu>0$,

$$
\|\nabla f(x)\|^{2} \geq 2 \mu\left(f(x)-f^{*}\right) \quad \forall x
$$

It is interesting, that Gradient Descent algorithm has
The following functions satisfy the PL-condition, but are not convex. PLink to the code

$$
f(x)=x^{2}+3 \sin ^{2}(x)
$$

Function, that satisfies Polyak- Lojasiewicz condition

$$
f(x, y)=\frac{(y-\sin x)^{2}}{2}
$$

Non-convex PL function

Gradient Descent convergence. Polyak-Lojasiewicz case

Theorem
Consider the Problem

$$
f(x) \rightarrow \min _{x \in \mathbb{R}^{d}}
$$

and assume that f is μ-Polyak-Łojasiewicz and L-smooth, for some $L \geq \mu>0$.
Consider $\left(x^{t}\right)_{t \in \mathbb{N}}$ a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0<\alpha \leq \frac{1}{L}$. Then:

$$
f\left(x^{t}\right)-f^{*} \leq(1-\alpha \mu)^{t}\left(f\left(x^{0}\right)-f^{*}\right)
$$

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$
\begin{aligned}
f\left(x^{t+1}\right) & \leq f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x^{t+1}-x^{t}\right\rangle+\frac{L}{2}\left\|x^{t+1}-x^{t}\right\|^{2} \\
& =f\left(x^{t}\right)-\alpha\left\|\nabla f\left(x^{t}\right)\right\|^{2}+\frac{L \alpha^{2}}{2}\left\|\nabla f\left(x^{t}\right)\right\|^{2} \\
& =f\left(x^{t}\right)-\frac{\alpha}{2}(2-L \alpha)\left\|\nabla f\left(x^{t}\right)\right\|^{2} \\
& \leq f\left(x^{t}\right)-\frac{\alpha}{2}\left\|\nabla f\left(x^{t}\right)\right\|^{2},
\end{aligned}
$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$
\begin{aligned}
f\left(x^{t+1}\right) & \leq f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x^{t+1}-x^{t}\right\rangle+\frac{L}{2}\left\|x^{t+1}-x^{t}\right\|^{2} \\
& =f\left(x^{t}\right)-\alpha\left\|\nabla f\left(x^{t}\right)\right\|^{2}+\frac{L \alpha^{2}}{2}\left\|\nabla f\left(x^{t}\right)\right\|^{2} \\
& =f\left(x^{t}\right)-\frac{\alpha}{2}(2-L \alpha)\left\|\nabla f\left(x^{t}\right)\right\|^{2} \\
& \leq f\left(x^{t}\right)-\frac{\alpha}{2}\left\|\nabla f\left(x^{t}\right)\right\|^{2},
\end{aligned}
$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.
We can now use the Polyak-Lojasiewicz property to write:

$$
f\left(x^{t+1}\right) \leq f\left(x^{t}\right)-\alpha \mu\left(f\left(x^{t}\right)-f^{*}\right)
$$

The conclusion follows after subtracting f^{*} on both sides of this inequality, and using recursion.

Gradient Descent convergence. Smooth convex case

Theorem
Consider the Problem

$$
f(x) \rightarrow \min _{x \in \mathbb{R}^{d}}
$$

and assume that f is convex and L-smooth, for some $L>0$. Let $\left(x^{t}\right)_{t \in \mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0<\alpha \leq \frac{1}{L}$. Then, for all $x^{*} \in \operatorname{argmin} f$, for all $t \in \mathbb{N}$ we have that

$$
f\left(x^{t}\right)-f^{*} \leq \frac{\left\|x^{0}-x^{*}\right\|^{2}}{2 \alpha t}
$$

Gradient Descent convergence. Smooth convex case

Gradient Descent convergence. Smooth μ-strongly convex case

Theorem

Consider the Problem

$$
f(x) \rightarrow \min _{x \in \mathbb{R}^{d}}
$$

and assume that f is μ-strongly convex and L-smooth, for some $L \geq \mu>0$. Let $\left(x^{t}\right)_{t \in \mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0<\alpha \leq \frac{1}{L}$. Then, for $x^{*}=\operatorname{argmin} f$ and for all $t \in \mathbb{N}$:

$$
\left\|x^{t+1}-x^{*}\right\|^{2} \leq(1-\alpha \mu)^{t+1}\left\|x^{0}-x^{*}\right\|^{2}
$$

Gradient Descent convergence. Smooth μ-strongly convex case

Gradient Descent for Linear Least Squares aka Linear Regression

Figure 4: Illustration

In a least-squares, or linear regression, problem, we have measurements $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$ and seek a vector $\theta \in \mathbb{R}^{n}$ such that $X \theta$ is close to y. Closeness is defined as the sum of the squared differences:

$$
\sum_{i=1}^{m}\left(x_{i}^{\top} \theta-y_{i}\right)^{2}=\|X \theta-y\|_{2}^{2} \rightarrow \min _{\theta \in \mathbb{R}^{n}}
$$

For example, we might have a dataset of m users, each represented by n features. Each row x_{i}^{\top} of X is the features for user i, while the corresponding entry y_{i} of y is the measurement we want to predict from x_{i}^{\top}, such as ad spending. The prediction is given by $x_{i}^{\top} \theta$.

Linear Least Squares aka Linear Regression ${ }^{1}$

1. Is this problem convex? Strongly convex?

Linear Least Squares aka Linear Regression ${ }^{1}$

1. Is this problem convex? Strongly convex?
2. What do you think about convergence of Gradient Descent for this problem?
[^0]
l_{2}-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an l_{2}-penality, also known as Tikhonov regularization, l_{2}-regularization, or weight decay.

$$
\|X \theta-y\|_{2}^{2}+\frac{\mu}{2}\|\theta\|_{2}^{2} \rightarrow \min _{\theta \in \mathbb{R}^{n}}
$$

Note: With this modification the objective is μ-strongly convex again.
Take a look at the なode

[^0]: ${ }^{1}$ Take a look at the $\boldsymbol{\text { Pexample }}$ of real-world data linear least squares problem

