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Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

Optimality conditions

Ax∗ = b
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Exact line search aka steepest descent
αk = arg min

α∈R+
f(xk+1) = arg min

α∈R+
f(xk − α∇f(xk))

More theoretical than practical approach. It also allows you to analyze the convergence, but
often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is
orthogonal to the previous one:

αk = arg min
α∈R+

f(xk − α∇f(xk))

Optimality conditions:

∇f(xk)T ∇f(xk+1) = 0

\ Optimal value for quadratics

∇f(xk)⊤A(xk − α∇f(xk)) − ∇f(xk)⊤b = 0 αk = ∇f(xk)T ∇f(xk)
∇f(xk)T A∇f(xk)
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Conjugate directions. A-orthogonality.
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(x) = 1
2 xT Ix looks just like on the left

part of Figure 2, while in another coordinates it looks like f(x̂) = 1
2 x̂T Ax̂, where A ∈ Sd

++.
1
2xT Ix

1
2 x̂T Ax̂

Since A = QΛQT :

1
2 x̂T Ax̂

= 1
2 x̂T QΛQT x̂ = 1

2 x̂T QΛ
1
2 Λ

1
2 QT x̂ = 1

2xT Ix if x = Λ
1
2 QT x̂ and x̂ = QΛ− 1

2 x

\ A-orthogonal vectors

Vectors x ∈ Rd and y ∈ Rd are called A-orthogonal (or A-conjugate) if

xT Ay = 0 ⇔ x ⊥A y

When A = I, A-orthogonality becomes orthogonality.
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Gram–Schmidt process
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Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1. Let k = 0 and xk = x0, count dk = d0 = −∇f(x0).

2. By the procedure of line search we find the optimal length of step. Calculate α minimizing f(xk + αkdk) by the
formula

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3. We’re doing an algorithm step:
xk+1 = xk + αkdk

4. update the direction: dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Method of Conjugate Directions v § } 7
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Method of Conjugate Directions
If a set of vectors d1, . . . , dk - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A ∈ Sn

++.

Proof

We’ll show, that if
k∑

i=1
αkdk = 0, than all coefficients should be equal to zero:

0 =
n∑

i=1

αkdk

= d⊤
j A

(
n∑

i=1

αkdk

)

=
n∑

i=1

αkd⊤
j Adk

= αjd⊤
j Adj + 0 + . . . + 0

Thus, αj = 0, for all other indices one have perform the same process
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Conjugate Gradients
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Conjugate Gradients
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Conjugate Gradients
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Conjugate gradient method

\

Conjugate Gradient = Conjugate Directions
+ Residuals as starting vectors for Gram–Schmidt

r0 := b − Ax0

if r0 is sufficiently small, then return x0 as the result
d0 := r0

k := 0
repeat

αk := rT
krk

dT
kAdk

xk+1 := xk + αkdk

rk+1 := rk − αkAdk

if rk+1 is sufficiently small, then exit loop

βk :=
rT

k+1rk+1

rT
krk

dk+1 := rk+1 + βkdk

k := k + 1
end repeat
return xk+1 as the result

Conjugate gradient v § } 12

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in r
iterations.

Theorem 2. The following convergence bound holds

∥xk − x∗∥A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

∥x0 − x∗∥A,

where ∥x∥2
A = x⊤Ax and κ(A) = λ1(A)

λn(A) is the conditioning number of matrix A, λ1(A) ≥ ... ≥ λn(A) are the
eigenvalues of matrix A

Note: compare the coefficient of the geometric progression with its analog in gradient descent.
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Non-linear conjugate gradient method
In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve
the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

xk+1 − xk = cdk,

where c is some kind of constant. Then for the quadratic case, we have:

∇f(xk+1) − ∇f(xk) = (Axk+1 − b) − (Axk − b) = A(xk+1 − xk) = cAdk

Expressing from this equation the work Adk = 1
c

(∇f(xk+1) − ∇f(xk)), we get rid of the “knowledge” of the
function in step definition βk, then point 4 will be rewritten as:

βk = ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
d⊤

k (∇f(xk+1) − ∇f(xk))
.

This method is called the Polack - Ribier method.
Conjugate gradient v § } 14
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Preconditioned conjugate gradient method

Conjugate gradient v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

	Quadratic optimization problem
	Method of Conjugate Directions
	Conjugate gradient

