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Strongly convex quadratics

Consider the following quadratic optimization problem: Optimality conditions
min f(z) = min LT e —bTa + ¢, where A €S ,. Az” =b
z€Rd zeRrd 2
Steepest Descent Conjugate Gradient
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Exact line search aka steepest descent
ap = arg min f(xgy1) = arg min f(zr — aVf(xg))
acRt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(zk))
acRt
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Exact line search aka steepest descent
a = arg min f(zry1) = arg min f(zr — aV f(zk))
a€Rt a€cRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
An interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

oy = arg min f(zr — oV f(zk))
a€Rt

Optimality conditions:

Vf(@r) Vf(zre) =0

O Optimal value for quadratics

T
Vf(xk)TA(:ck —aVf(zg)) — Vf(xk)Tb =0 ag = VVJC{EC?;;AVVJZE;(K;Z) Eigure 1: Steepest
escent
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Conjugate directions. A-orthogonality.

vy and v, are orthogonal
viv,=0.00
VIAv,; =1.19

%

S
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V1 and V2 are A-orthogonal
1702= —0.80
V1TAV2 = —0.00
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left
part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 1
§Z'TI£L’ EATAL%

Since A = QAQT:

%iTAi
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left

part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 T 1 AT 4 s
—2Tr |
g% 1z 2 T
Since A = QAQT:
%@TA@ = %iTQAQsz
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left

part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 T 1 AT 4 s
—2Tr |
21’ T 2 i
Since A = QAQT:
%@TA@ = %iTQAQsz = %@TQA%A%QT@
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left

part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 T 1 AT 4 s
2aTr ~3TA
21’ X 2 X
Since A = QAQT:
%@TA@ - %iTQAQsz - %@TQA%A%QT@ - %xTIx
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left

part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 T 1AT -
—z' I 3" A
5% Iz 3 z
Since A = QAQT:
1.r,. 1.7 r._ Lo 1 1 7. 17 . L7,
5% Ax:Em QAQ &=t QAZA2Q &= Iz ife=A2Q &
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Conjugate directions. A-orthogonality.

Suppose, we have two coordinate systems and some quadratic function f(z) = %xTIm looks just like on the left

part of Figure 2, while in another coordinates it looks like f(#) = 32" A%, where A € S1.

1 7 1.7,
—z' I 3" A
5% Iz 3 z
Since A = QAQT:
1.r,. 1.7 r._ Lo 1 1 7. 17 . L7, N -1
5% szix QAQ =% QA2AZQ =gz Ix ife=A2Q Z and £ = QA 2z

Y A-orthogonal vectors

Vectors 2 € R? and y € R? are called A-orthogonal (or A-conjugate) if
zTAy=0 & zlay

When A = I, A-orthogonality becomes orthogonality.
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Gram—Schmidt process
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Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dy = do = —V f(z0).

‘f -+ 1’11'}2 Method of Conjugate Directions


https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dy = do = —V f(z0).

2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the
formula

dy (Azg —b)

T AT Ady
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Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dy = do = —V f(z0).
2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the

formula

dy (Azy —b)
A = _Ti
d, Ady
3. We're doing an algorithm step:

Th+1 = Tk + ardi
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Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1. Let K =0 and z = xo, count dy = do = —V f(z0).
2. By the procedure of line search we find the optimal length of step. Calculate @ minimizing f(zx + axrdi) by the

formula

dy (Azy —b)
A = _Ti
d, Ady
3. We're doing an algorithm step:

Th+1 = Tk + ardi

4. update the direction: dip+1 = =V f(2k+1) + Brdr, where B is calculated by the formula:

Vf(wri1) " Ady

e = =" A4,
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Idea of the method of conjugate directions

Thus, we formulate an algorithm:

1.
2.

Let £ =0 and x = xo, count di, = do = —V f(z0).

By the procedure of line search we find the optimal length of step. Calculate o minimizing f(z + axdy) by the
formula

dy (Azg —b)

T AT Ady

. We're doing an algorithm step:

Th+1 = Tk + ardi

. update the direction: dy+1 = —V f(2k+1) + Brdr, where B is calculated by the formula:

Vf(wri1) " Ady

e = =" A4,

. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).
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Method of Conjugate Directions

If a set of vectors d1,...,dy - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly
independent. A € S% ..
Proof
k
We'll show, that if > ardr = 0, than all coefficients should be equal to zero:
i=1

0= iakdk
=1
= d;rA (zn: Oékdk>
=1

= Zakd;rAdk
i=1
=a;d] Ad; +0+...4+0

Thus, a; = 0, for all other indices one have perform the same process
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Conjugate Gradients
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Conjugate Gradients
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Conjugate gradient method

ro:=b— Axg
o if ro is sufficiently small, then return x¢ as the result
Conjugate Gradient = Conjugate Directions do :=ro

4+ Residuals as starting vectors for Gram—-Schmidt L .=

repeat
T
o 1= SLILL
" dfAds

Xp4+1 = Xk + apdi
re4+1 (=T — OékAdk
if rp41 is sufficiently small, then exit loop
r}g—+1rk+l
= e
k
di41 = rr+1 + Brdg
k:=k+1
end repeat

_ return Xi41 as the result
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Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in r
iterations.

Theorem 2. The following convergence bound holds

. r(4) —1 .
2k —a™la <2 === llzo—a7|a,

K(A)+1

where ||z||4 = 27 Az and k(A) = ;i((ﬁ; is the conditioning number of matrix A, A\1(A) > ... > X\, (A) are the
eigenvalues of matrix A

Note: compare the coefficient of the geometric progression with its analog in gradient descent.
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Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve

the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:
Tr1 — Tk = cdy,

where ¢ is some kind of constant. Then for the quadratic case, we have:
Vf(l‘k+1) — Vf(l’k) = (Al’k+1 — b) — (Al’k — b) = A($k+1 — a:k) = CAdk

Expressing from this equation the work Ady = 1 (Vf(zr+1) — Vf(zx)), we get rid of the “knowledge” of the
c
function in step definition B, then point 4 will be rewritten as:

Vf(@r1) " (Vf(xri1) = Vi(xr)
df (Vf(xrer) = V()

This method is called the Polack - Ribier method.
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Preconditioned conjugate gradient method
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