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Idea of Newton method of root finding
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Newton method

Lk+1 Lk

Consider the function ¢(z) : R — R.

The whole idea came from building a linear
approximation at the point x; and find its
root, which will be the new iteration point:

e(xr)

/
Tr) =
© (k) P—

We get an iterative scheme:

w(wx)
@' (k)

Tk+1 = Tk —

Which will become a Newton optimization
a.

method in case f'(z) = p(x)’:

Thir =k — [V f(zk)] TV f ()

ILiterally we aim to solve the problem of finding
stationary points V f(z) = 0
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Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point . Let us consider the quadratic approximation of this
function near xy:

1L @) = flan) + (VI (@) — o) + (V2 (@) (@ — w2 — ).
The idea of the method is to find the point 21, that minimizes the function f(z), i.e. V f(z41) = 0.
Vil (@ren) = V (k) + V2 f(@r) (@0 — 21) = 0
V2 f (@) (whir — x) = =V f (k)
V2 f(wr)@n — 2x) = = [V2f ()] Vf(an)
a1 =z — [V ()] V().

1

(V2 ()]

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

‘f -+ ].".}ri Newton method 0 O
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Newton method as a local quadratic Taylor approximation minimizer

f(z)
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Newton method as a local quadratic Taylor approximation minimizer
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Newton method as a local quadratic Taylor approximation minimizer
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Newton method as a local quadratic Taylor approximation minimizer

f(z)

4

Y

0 Lk+2 Lk4+1
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Convergence

Theorem
Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: pulI, < V2f(x) < LI,. Then Newton's method with a constant step locally

converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to =™ at a quadratic rate.

‘f -+ 1,’1‘131; Newton method @0 O
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Convergence

Theorem
Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: pulI, < V2f(x) < LI,. Then Newton's method with a constant step locally

converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to =™ at a quadratic rate.

Proof
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Convergence

Theorem
Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: pulI, < V2f(x) < LI,. Then Newton's method with a constant step locally

converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to =™ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

V) - Vi) = / V2 f(a" 4 7on — ) ok — o)
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Convergence

Theorem
Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: pulI, < V2f(x) < LI,. Then Newton's method with a constant step locally

converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous,
then this method converges locally to =™ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula
1
Vf(zr) — Vf(z") = / V2 f(z* +7(xk — %)) (@ — z)dr
0

2. Then we track the distance to the solution

Thi1 — X = Tp — [VQf(ack)]_l Vi(zg) —x" =z — 2" — [ng(xk)]_l Vf(zk) =

=xp—x" — [VQf(al:k)]71 / Vif(z* +71(xk — 2%))(xp — *)dr

‘f -+ ].,’.‘.jri Newton method 0 O
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Convergence

= (I - [V f@)] / Vi (@" (e — x*))dT> (e —a") =
= [V ()] (v2f<xk> - / Vi@ 4 (e — m*))dT> (ex — ") =
0
= [V*f(@)] ( / (V2f(n) = V2f (" + ok — x*))df)) (ex — o) =

= [V f(@r)] " Gulax — )

4. We have introduced:

G = / (V2 f(zk) = V2 f (2" + 7(zk — 27))dr) .
0
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Convergence

5. Let's try to estimate the size of Gy:

|Gk|=‘ / (V2 f(zk) = V2 f (@™ 4 7(zk — 27))dr) || <
0

1
< / HV2f(xk) — V(" 4 (- x*))H dr < (Hessian's Lipschitz continuity)
0

1 1
< / M|z, — 2% — 7(zx — )| dr = / M|z, — z*||(1 — 7)dr = %M,
0 0

where 7, = ||z — x|

‘f -+ ].".}2 Newton method
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Convergence

5. Let's try to estimate the size of Gy:

|Gk|=‘ / (V2 f(zk) = V2 f (@™ 4 7(zk — 27))dr) || <
0

1
< / HV2f(xk) — V(" 4 (- ac*))H dr < (Hessian's Lipschitz continuity)
0
! * * ! * Tk
< M||zk — 2" — 7(zk — 27)||dT = M||zk — z ||(1—7')0l7'=?M7
0 0

where 7, = ||z — x|
6. So, we have:

[V2f(a)]

and we need to bound the norm of the inverse hessian

EM

Tl < ‘

‘f -+ ].".}2 Newton method
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Convergence
7. Because of Hessian's Lipschitz continuity and symmetry:
V2 f(xy) — Vif(z") = —Mry1,
V2 f(xg) = V2f(z*) — MryI,
V2 f(zx) = pln — Mril,
Vi f(zk) = (w— Mrg) I,

Convexity implies V2 f(zx) = 0, i.e. 7 < =,

092 @) 7| < o= 2y

‘f -+ ].".}2 Newton method
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Convergence

7. Because of Hessian's Lipschitz continuity and symmetry:
V2 f(zi) — V2 f(z*) = —Mril,
V2 f(ar) = V2 f(z*) — MriI,
V2 f(zk) = pln — Mril,
V2 (k) = (= Mry)l,

Convexity implies V2 f(zx) = 0, i.e. 7% < =,

|72 @0] | < u = 2am)™!

8. The convergence condition 741 < i imposes additional conditions on rg @ 7 < f—]\‘}

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian
converges quadratically near (||zo — z*|| < 2£) to the solution.

‘f -+ 1,’1‘131; Newton method 0 O
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Summary

What's nice:

® quadratic convergence near the solution z*

What's not nice:
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Summary

What's nice:
® quadratic convergence near the solution z*

® affine invariance

What's not nice:
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Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:
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Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n?) memory
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Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n %) memory
® it is necessary to solve linear systems: O(n?) operations
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Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

® it is necessary to store the (inverse) hessian on each iteration: O(n %) memory
® it is necessary to solve linear systems O(n®) operations
® the Hessian can be degenerate at =~
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Summary

What's nice:

® quadratic convergence near the solution z*
® affine invariance
® the parameters have little effect on the convergence rate

What's not nice:

it is necessary to store the (inverse) hessian on each iteration: O(n %) memory

it is necessary to solve linear systems O(n®) operations

the Hessian can be degenerate at x*

the hessian may not be positively determined — direction —(f”(x))~'f'(z) may not be a descending direction
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Newton method problems
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Newton method problems

R /— min

Newton method

3.0

Quadratic approximation becomes inaccurate
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Figure 8: lllustration
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The idea of adapive metrics

Given f(x) and a point zo. Define Now we can explicitly pose a problem of finding s, as it

B:(20) = {z € R™ : d(z,z0) = €} as the set of points was stated above.
ith di . H he exi f .
w.|t distance € to xo. Here we presume the existence of a min f(zo + 6z)
distance function d(z, o). SzERX
T _ 2
¥ = arg min (.T) s.t. dx Adx =¢
zE€Be(x0)

Using equation ( 1 it can be written as:

Then, we can define another steepest descent direction in

S . . T
terms of minimizer of function on a sphere: min Vf(zo) bz
SzeRX
*
. r — X9 T 2
s = lim —— s.t. dx Adx =¢
e—=0 g

Using Lagrange multipliers method, we can easily

Let us assume that the distance is defined locally by some conclude, that the answer is:

metric A:
2¢?

d(o.an) = (& = 20)" Ao = 20 = S A

Let us also consider first order Taylor approximation of a \\hich means, that new direction of steepest descent is

function f(z) near the point zo: nothing else, but A~V f(xo).

F(wo + 67) ~ f(zo) + Vf(mo)Técc ) Indeed, if the space is isotropic and A = I, we

immediately have gradient descent formula, while Newton
R fomin o on method method uses local Hessian as a metric matrix.® o ©

12
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Quasi-Newton methods intuition
For the classic task of unconditional optimization f(z) — ;Ielgi the general scheme of iteration method is written as:
Tk+1 = Tk + Qi Sk
In the Newton method, the s direction (Newton's direction) is set by the linear system solution at each step:
sk = —BiVf(zx), Bk = fou (xk)
i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of By = I,, as By, at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the B, matrix so that it tends in some
sense at k — oo to the true value of inverted Hessian in the local optimum f; ' (z.). Let's consider several schemes
using iterative updating of By matrix in the following way:

Biy1 = Br + ABy
Then if we use Taylor's approximation for the first order gradient, we get it:

Vi(zk) = VI (@rt1) & foa(@rt1)(@e — Trs1).

‘f‘”.,l.‘.jr; Quasi-Newton methods 0 O 13
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Quasi-Newton method

Now let’s formulate our method as:
Al‘k = Bk+1Ayk, where Ayk = Vf(wk+1) — Vf(mk)
in case you set the task of finding an update ABj:

ABkAyk = A:l?k — BkAyk

‘f -+ ].".}2 Quasi-Newton methods
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Broyden method

The simplest option is when the amendment A By has a rank equal to one. Then you can look for an amendment in
the form
ABy = [ixqrqy -

where py, is a scalar and gy is a non-zero vector. Then mark the right side of the equation to find ABy, for Azy:
Az, = Az, — BpAyy
We get it:
1k argr Ay = Az
(- @i Ayr) ax = Az,
A possible solution is: g = Azy, pur = (qkTAyk)_l.
Then an iterative amendment to Hessian's evaluation at each iteration:

(Axk — BkAyk)(Axk — BkAyk)T
(Azy — BrAyk, Ayr) .

ABy =

‘f‘”.,l.‘.jr; Quasi-Newton methods 0 O 15
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Davidon—Fletcher—Powell method

ABy = ulek(Aa:k)T =+ ugBkAyk(BkAyk)T.

(Azy)(Azk) " (BrAye)(BrAye) "

ABy = -
P Az, Ay (BrAyk, Ayr)
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Broyden—Fletcher-Goldfarb—Shanno method

ABy=QUQ", Q=lg.e), @102 €R", U—<‘j

(Azy)(Azi) " (BeAyw)(BeAyg) T
ABy, = - + .
"7 Az, Ay (Bilyp, Aye) | PRPR

‘f -+ 1’11'}2 Quasi-Newton methods

C

b
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Code

® Open In Colab

‘f -+ 1’11'}2 Quasi-Newton methods
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Code

® Open In Colab
® Comparison of quasi Newton methods
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Natural Gradient Descent
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K-FAC

R /— min

K-FAC

20
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