
Newton method. Quasi-Newton methods. K-FAC

Daniil Merkulov

Optimization methods. MIPT

v § } 1

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Idea of Newton method of root finding
Consider the function φ(x) : R → R.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Which will become a Newton optimization
method in case f ′(x) = φ(x)a:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)
aLiterally we aim to solve the problem of finding

stationary points ∇f(x) = 0

Newton method v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function f̃(x), i.e. ∇f̃(xk+1) = 0.

∇fII
xk

(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0
∇2f(xk)(xk+1 − xk) = −∇f(xk)[

∇2f(xk)
]−1 ∇2f(xk)(xk+1 − xk) = −

[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Let us immediately note the limitations related to the necessity of the Hessian’s non-degeneracy (for the method to
exist), as well as its positive definiteness (for the convergence guarantee).

Newton method v § } 3

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 1: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 2: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 3: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 4: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 5: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method as a local quadratic Taylor approximation minimizer

Figure 6: Illustration

Newton method v § } 4

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

∇f(xk) − ∇f(x∗) =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

2. Then we track the distance to the solution

xk+1 − x∗ = xk −
[
∇2f(xk)

]−1 ∇f(xk) − x∗ = xk − x∗ −
[
∇2f(xk)

]−1 ∇f(xk) =

= xk − x∗ −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

Newton method v § } 5

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

∇f(xk) − ∇f(x∗) =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

2. Then we track the distance to the solution

xk+1 − x∗ = xk −
[
∇2f(xk)

]−1 ∇f(xk) − x∗ = xk − x∗ −
[
∇2f(xk)

]−1 ∇f(xk) =

= xk − x∗ −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

Newton method v § } 5

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

∇f(xk) − ∇f(x∗) =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

2. Then we track the distance to the solution

xk+1 − x∗ = xk −
[
∇2f(xk)

]−1 ∇f(xk) − x∗ = xk − x∗ −
[
∇2f(xk)

]−1 ∇f(xk) =

= xk − x∗ −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

Newton method v § } 5

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton’s method with a constant step locally
converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz continuous,
then this method converges locally to x∗ at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

∇f(xk) − ∇f(x∗) =
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

2. Then we track the distance to the solution

xk+1 − x∗ = xk −
[
∇2f(xk)

]−1 ∇f(xk) − x∗ = xk − x∗ −
[
∇2f(xk)

]−1 ∇f(xk) =

= xk − x∗ −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))(xk − x∗)dτ

Newton method v § } 5

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence

3.

=
(

I −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))dτ

)
(xk − x∗) =

=
[
∇2f(xk)

]−1
(

∇2f(xk) −
∫ 1

0
∇2f(x∗ + τ(xk − x∗))dτ

)
(xk − x∗) =

=
[
∇2f(xk)

]−1
(∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

))
(xk − x∗) =

=
[
∇2f(xk)

]−1
Gk(xk − x∗)

4. We have introduced:

Gk =
∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)
.

Newton method v § } 6

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence

3.

=
(

I −
[
∇2f(xk)

]−1
∫ 1

0
∇2f(x∗ + τ(xk − x∗))dτ

)
(xk − x∗) =

=
[
∇2f(xk)

]−1
(

∇2f(xk) −
∫ 1

0
∇2f(x∗ + τ(xk − x∗))dτ

)
(xk − x∗) =

=
[
∇2f(xk)

]−1
(∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

))
(xk − x∗) =

=
[
∇2f(xk)

]−1
Gk(xk − x∗)

4. We have introduced:

Gk =
∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)
.

Newton method v § } 6

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence

5. Let’s try to estimate the size of Gk:

∥Gk∥ =
∥∥∥∥∫ 1

0

(
∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))dτ

)∥∥∥∥ ≤

≤
∫ 1

0

∥∥∇2f(xk) − ∇2f(x∗ + τ(xk − x∗))
∥∥ dτ ≤ (Hessian’s Lipschitz continuity)

≤
∫ 1

0
M∥xk − x∗ − τ(xk − x∗)∥dτ =

∫ 1

0
M∥xk − x∗∥(1 − τ)dτ = rk

2 M,

where rk = ∥xk − x∗∥.

6. So, we have:
rk+1 ≤

∥∥∥[
∇2f(xk)

]−1
∥∥∥ · rk

2 M · rk

and we need to bound the norm of the inverse hessian

Newton method v § } 7

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
7. Because of Hessian’s Lipschitz continuity and symmetry:

∇2f(xk) − ∇2f(x∗) ⪰ −MrkIn

∇2f(xk) ⪰ ∇2f(x∗) − MrkIn

∇2f(xk) ⪰ µIn − MrkIn

∇2f(xk) ⪰ (µ − Mrk)In

Convexity implies ∇2f(xk) ≻ 0, i.e. rk < µ
M

.∥∥∥[
∇2f(xk)

]−1
∥∥∥ ≤ (µ − Mrk)−1

rk+1 ≤ r2
kM

2(µ − Mrk)

8. The convergence condition rk+1 < rk imposes additional conditions on rk : rk < 2µ
3M

Thus, we have an important result: Newton’s method for the function with Lipschitz positive-definite Hessian
converges quadratically near (∥x0 − x∗∥ < 2µ

3M
) to the solution.

Newton method v § } 8

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Convergence
7. Because of Hessian’s Lipschitz continuity and symmetry:

∇2f(xk) − ∇2f(x∗) ⪰ −MrkIn

∇2f(xk) ⪰ ∇2f(x∗) − MrkIn

∇2f(xk) ⪰ µIn − MrkIn

∇2f(xk) ⪰ (µ − Mrk)In

Convexity implies ∇2f(xk) ≻ 0, i.e. rk < µ
M

.∥∥∥[
∇2f(xk)

]−1
∥∥∥ ≤ (µ − Mrk)−1

rk+1 ≤ r2
kM

2(µ − Mrk)

8. The convergence condition rk+1 < rk imposes additional conditions on rk : rk < 2µ
3M

Thus, we have an important result: Newton’s method for the function with Lipschitz positive-definite Hessian
converges quadratically near (∥x0 − x∗∥ < 2µ

3M
) to the solution.

Newton method v § } 8

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance

• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:

• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory

• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations

• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Summary

What’s nice:
• quadratic convergence near the solution x∗

• affine invariance
• the parameters have little effect on the convergence rate

What’s not nice:
• it is necessary to store the (inverse) hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate at x∗

• the hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending direction

Newton method v § } 9

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method problems

Figure 7: IllustrationNewton method v § } 10

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Newton method problems

Figure 8: Illustration
Newton method v § } 11

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

The idea of adapive metrics
Given f(x) and a point x0. Define
Bε(x0) = {x ∈ Rn : d(x, x0) = ε2} as the set of points
with distance ε to x0. Here we presume the existence of a
distance function d(x, x0).

x∗ = arg min
x∈Bε(x0)

f(x)

Then, we can define another steepest descent direction in
terms of minimizer of function on a sphere:

s = lim
ε→0

x∗ − x0

ε

Let us assume that the distance is defined locally by some
metric A:

d(x, x0) = (x − x0)⊤A(x − x0)

Let us also consider first order Taylor approximation of a
function f(x) near the point x0:

f(x0 + δx) ≈ f(x0) + ∇f(x0)⊤δx (1)

Now we can explicitly pose a problem of finding s, as it
was stated above.

min
δx∈R⋉

f(x0 + δx)

s.t. δx⊤Aδx = ε2

Using equation (1 it can be written as:

min
δx∈R⋉

∇f(x0)⊤δx

s.t. δx⊤Aδx = ε2

Using Lagrange multipliers method, we can easily
conclude, that the answer is:

δx = − 2ε2

∇f(x0)⊤A−1∇f(x0)A−1∇f

Which means, that new direction of steepest descent is
nothing else, but A−1∇f(x0).
Indeed, if the space is isotropic and A = I, we
immediately have gradient descent formula, while Newton
method uses local Hessian as a metric matrix.Newton method v § } 12

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Quasi-Newton methods intuition
For the classic task of unconditional optimization f(x) → min

x∈Rn
the general scheme of iteration method is written as:

xk+1 = xk + αksk

In the Newton method, the sk direction (Newton’s direction) is set by the linear system solution at each step:

sk = −Bk∇f(xk), Bk = f−1
xx (xk)

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the true value of inverted Hessian in the local optimum f−1

xx (x∗). Let’s consider several schemes
using iterative updating of Bk matrix in the following way:

Bk+1 = Bk + ∆Bk

Then if we use Taylor’s approximation for the first order gradient, we get it:

∇f(xk) − ∇f(xk+1) ≈ fxx(xk+1)(xk − xk+1).

Quasi-Newton methods v § } 13

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Quasi-Newton method

Now let’s formulate our method as:

∆xk = Bk+1∆yk, where ∆yk = ∇f(xk+1) − ∇f(xk)

in case you set the task of finding an update ∆Bk:

∆Bk∆yk = ∆xk − Bk∆yk

Quasi-Newton methods v § } 14

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Broyden method

The simplest option is when the amendment ∆Bk has a rank equal to one. Then you can look for an amendment in
the form

∆Bk = µkqkq⊤
k .

where µk is a scalar and qk is a non-zero vector. Then mark the right side of the equation to find ∆Bk for ∆zk:

∆zk = ∆xk − Bk∆yk

We get it:
µkqkq⊤

k ∆yk = ∆zk(
µk · q⊤

k ∆yk

)
qk = ∆zk

A possible solution is: qk = ∆zk, µk =
(
q⊤

k ∆yk

)−1.

Then an iterative amendment to Hessian’s evaluation at each iteration:

∆Bk = (∆xk − Bk∆yk)(∆xk − Bk∆yk)⊤

⟨∆xk − Bk∆yk, ∆yk⟩ .

Quasi-Newton methods v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Davidon–Fletcher–Powell method

∆Bk = µ1∆xk(∆xk)⊤ + µ2Bk∆yk(Bk∆yk)⊤.

∆Bk = (∆xk)(∆xk)⊤

⟨∆xk, ∆yk⟩ − (Bk∆yk)(Bk∆yk)⊤

⟨Bk∆yk, ∆yk⟩ .

Quasi-Newton methods v § } 16

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Broyden–Fletcher–Goldfarb–Shanno method

∆Bk = QUQ⊤, Q = [q1, q2], q1, q2 ∈ Rn, U =
(

a c
c b

)
.

∆Bk = (∆xk)(∆xk)⊤

⟨∆xk, ∆yk⟩ − (Bk∆yk)(Bk∆yk)⊤

⟨Bk∆yk, ∆yk⟩ + pkp⊤
k .

Quasi-Newton methods v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Code

• Open In Colab

• Comparison of quasi Newton methods

Quasi-Newton methods v § } 18

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Code

• Open In Colab
• Comparison of quasi Newton methods

Quasi-Newton methods v § } 18

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Natural Gradient Descent

Quasi-Newton methods v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

K-FAC

K-FAC v § } 20

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

	Newton method
	Quasi-Newton methods
	K-FAC

