Newton method. Quasi-Newton methods. K-FAC

Daniil Merkulov

Optimization methods. MIPT

Idea of Newton method of root finding

Consider the function $\varphi(x): \mathbb{R} \rightarrow \mathbb{R}$.
The whole idea came from building a linear approximation at the point x_{k} and find its root, which will be the new iteration point:

$$
\varphi^{\prime}\left(x_{k}\right)=\frac{\varphi\left(x_{k}\right)}{x_{k+1}-x_{k}}
$$

We get an iterative scheme:

$$
x_{k+1}=x_{k}-\frac{\varphi\left(x_{k}\right)}{\varphi^{\prime}\left(x_{k}\right)}
$$

Which will become a Newton optimization method in case $f^{\prime}(x)=\varphi(x)^{a}$:

$$
x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

[^0]
Newton method as a local quadratic Taylor approximation minimizer

Let us now have the function $f(x)$ and a certain point x_{k}. Let us consider the quadratic approximation of this function near x_{k} :

$$
f_{x_{k}}^{I I}(x)=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

The idea of the method is to find the point x_{k+1}, that minimizes the function $\tilde{f}(x)$, i.e. $\nabla \tilde{f}\left(x_{k+1}\right)=0$.

$$
\begin{aligned}
\nabla f_{x_{k}}^{I I}\left(x_{k+1}\right) & =\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=0 \\
\nabla^{2} f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right) & =-\nabla f\left(x_{k}\right) \\
{\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla^{2} f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right) } & =-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) \\
x_{k+1} & =x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
\end{aligned}
$$

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for the method to exist), as well as its positive definiteness (for the convergence guarantee).

Newton method as a local quadratic Taylor approximation minimizer

Newton method as a local quadratic Taylor approximation minimizer

Newton method as a local quadratic Taylor approximation minimizer

Newton method as a local quadratic Taylor approximation minimizer

Newton method as a local quadratic Taylor approximation minimizer

Newton method as a local quadratic Taylor approximation minimizer

Convergence

Theorem

Let $f(x)$ be a strongly convex twice continuously differentiable function at \mathbb{R}^{n}, for the second derivative of which inequalities are executed: $\mu I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^{*} at a quadratic rate.

Convergence

Theorem

Let $f(x)$ be a strongly convex twice continuously differentiable function at \mathbb{R}^{n}, for the second derivative of which inequalities are executed: $\mu I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^{*} at a quadratic rate.

Proof

Convergence

Theorem

Let $f(x)$ be a strongly convex twice continuously differentiable function at \mathbb{R}^{n}, for the second derivative of which inequalities are executed: $\mu I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^{*} at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$
\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d \tau
$$

Convergence

Theorem

Let $f(x)$ be a strongly convex twice continuously differentiable function at \mathbb{R}^{n}, for the second derivative of which inequalities are executed: $\mu I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^{*} at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$
\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d \tau
$$

2. Then we track the distance to the solution

$$
\begin{aligned}
x_{k+1}-x^{*}=x_{k}- & {\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)-x^{*}=x_{k}-x^{*}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)=} \\
& =x_{k}-x^{*}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d \tau
\end{aligned}
$$

Convergence

3.

$$
\begin{array}{r}
=\left(I-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\left(\nabla^{2} f\left(x_{k}\right)-\int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\left(\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} G_{k}\left(x_{k}-x^{*}\right)
\end{array}
$$

Convergence

3.

$$
\begin{array}{r}
=\left(I-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\left(\nabla^{2} f\left(x_{k}\right)-\int_{0}^{1} \nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\left(\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right)\left(x_{k}-x^{*}\right)= \\
=\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} G_{k}\left(x_{k}-x^{*}\right)
\end{array}
$$

4. We have introduced:

$$
G_{k}=\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)
$$

Convergence

5. Let's try to estimate the size of G_{k} :

$$
\begin{array}{r}
\left\|G_{k}\right\|=\left\|\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right\| \leq \\
\leq \int_{0}^{1}\left\|\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\right\| d \tau \leq \quad \text { (Hessian's Lipschitz continuity) } \\
\leq \int_{0}^{1} M\left\|x_{k}-x^{*}-\tau\left(x_{k}-x^{*}\right)\right\| d \tau=\int_{0}^{1} M\left\|x_{k}-x^{*}\right\|(1-\tau) d \tau=\frac{r_{k}}{2} M
\end{array}
$$

where $r_{k}=\left\|x_{k}-x^{*}\right\|$.

Convergence

5. Let's try to estimate the size of G_{k} :

$$
\begin{array}{r}
\left\|G_{k}\right\|=\left\|\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right\| \leq \\
\leq \int_{0}^{1}\left\|\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\right\| d \tau \leq \quad \text { (Hessian's Lipschitz continuity) } \\
\leq \int_{0}^{1} M\left\|x_{k}-x^{*}-\tau\left(x_{k}-x^{*}\right)\right\| d \tau=\int_{0}^{1} M\left\|x_{k}-x^{*}\right\|(1-\tau) d \tau=\frac{r_{k}}{2} M
\end{array}
$$

where $r_{k}=\left\|x_{k}-x^{*}\right\|$.
6. So, we have:

$$
r_{k+1} \leq\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\right\| \cdot \frac{r_{k}}{2} M \cdot r_{k}
$$

and we need to bound the norm of the inverse hessian

Convergence

7. Because of Hessian's Lipschitz continuity and symmetry:

$$
\begin{array}{r}
\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}\right) \succeq-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq \nabla^{2} f\left(x^{*}\right)-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq \mu I_{n}-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq\left(\mu-M r_{k}\right) I_{n}
\end{array}
$$

Convexity implies $\nabla^{2} f\left(x_{k}\right) \succ 0$, i.e. $r_{k}<\frac{\mu}{M}$.

$$
\begin{aligned}
\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\right\| & \leq\left(\mu-M r_{k}\right)^{-1} \\
r_{k+1} & \leq \frac{r_{k}^{2} M}{2\left(\mu-M r_{k}\right)}
\end{aligned}
$$

Convergence

7. Because of Hessian's Lipschitz continuity and symmetry:

$$
\begin{array}{r}
\nabla^{2} f\left(x_{k}\right)-\nabla^{2} f\left(x^{*}\right) \succeq-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq \nabla^{2} f\left(x^{*}\right)-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq \mu I_{n}-M r_{k} I_{n} \\
\nabla^{2} f\left(x_{k}\right) \succeq\left(\mu-M r_{k}\right) I_{n}
\end{array}
$$

Convexity implies $\nabla^{2} f\left(x_{k}\right) \succ 0$, i.e. $r_{k}<\frac{\mu}{M}$.

$$
\begin{aligned}
\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}\right\| & \leq\left(\mu-M r_{k}\right)^{-1} \\
r_{k+1} & \leq \frac{r_{k}^{2} M}{2\left(\mu-M r_{k}\right)}
\end{aligned}
$$

8. The convergence condition $r_{k+1}<r_{k}$ imposes additional conditions on $r_{k}: \quad r_{k}<\frac{2 \mu}{3 M}$

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian converges quadratically near $\left(\left\|x_{0}-x^{*}\right\|<\frac{2 \mu}{3 M}\right)$ to the solution.

Summary

What's nice:

- quadratic convergence near the solution x^{*}

What's not nice:

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance

What's not nice:

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance
- the parameters have little effect on the convergence rate What's not nice:

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}\left(n^{2}\right)$ memory

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}\left(n^{2}\right)$ memory
- it is necessary to solve linear systems: $\mathcal{O}\left(n^{3}\right)$ operations

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}\left(n^{2}\right)$ memory
- it is necessary to solve linear systems: $\mathcal{O}\left(n^{3}\right)$ operations
- the Hessian can be degenerate at x^{*}

Summary

What's nice:

- quadratic convergence near the solution x^{*}
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}\left(n^{2}\right)$ memory
- it is necessary to solve linear systems: $\mathcal{O}\left(n^{3}\right)$ operations
- the Hessian can be degenerate at x^{*}
- the hessian may not be positively determined \rightarrow direction $-\left(f^{\prime \prime}(x)\right)^{-1} f^{\prime}(x)$ may not be a descending direction

Newton method problems

Newton method problems

Figure 8: Illustration

The idea of adapive metrics

Given $f(x)$ and a point x_{0}. Define
$B_{\varepsilon}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{n}: d\left(x, x_{0}\right)=\varepsilon^{2}\right\}$ as the set of points with distance ε to x_{0}. Here we presume the existence of a distance function $d\left(x, x_{0}\right)$.

$$
x^{*}=\arg \min _{x \in B_{\varepsilon}\left(x_{0}\right)} f(x)
$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$
s=\lim _{\varepsilon \rightarrow 0} \frac{x^{*}-x_{0}}{\varepsilon}
$$

Let us assume that the distance is defined locally by some metric A :

$$
d\left(x, x_{0}\right)=\left(x-x_{0}\right)^{\top} A\left(x-x_{0}\right)
$$

Let us also consider first order Taylor approximation of a function $f(x)$ near the point x_{0} :

$$
\begin{equation*}
f\left(x_{0}+\delta x\right) \approx f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top} \delta x \tag{1}
\end{equation*}
$$

Now we can explicitly pose a problem of finding s, as it was stated above.

$$
\begin{aligned}
& \quad \min _{\delta x \in \mathbb{R}^{\ltimes}} f\left(x_{0}+\delta x\right) \\
& \text { s.t. } \delta x^{\top} A \delta x=\varepsilon^{2}
\end{aligned}
$$

Using equation (1 it can be written as:

$$
\min _{\delta x \in \mathbb{R}^{\ltimes}} \nabla f\left(x_{0}\right)^{\top} \delta x
$$

$$
\text { s.t. } \delta x^{\top} A \delta x=\varepsilon^{2}
$$

Using Lagrange multipliers method, we can easily conclude, that the answer is:

$$
\delta x=-\frac{2 \varepsilon^{2}}{\nabla f\left(x_{0}\right)^{\top} A^{-1} \nabla f\left(x_{0}\right)} A^{-1} \nabla f
$$

Which means, that new direction of steepest descent is nothing else, but $A^{-1} \nabla f\left(x_{0}\right)$.
Indeed, if the space is isotropic and $A=I$, we immediately have gradient descent formula, while Newton method uses local Hessian as a metric matrix. $\oplus \bigcirc \bigcirc 12$

Quasi-Newton methods intuition

For the classic task of unconditional optimization $f(x) \rightarrow \min _{x \in \mathbb{R}^{n}}$ the general scheme of iteration method is written as:

$$
x_{k+1}=x_{k}+\alpha_{k} s_{k}
$$

In the Newton method, the s_{k} direction (Newton's direction) is set by the linear system solution at each step:

$$
s_{k}=-B_{k} \nabla f\left(x_{k}\right), \quad B_{k}=f_{x x}^{-1}\left(x_{k}\right)
$$

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of $B_{k}=I_{n}$ as B_{k} at each step, we will exactly get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the B_{k} matrix so that it tends in some sense at $k \rightarrow \infty$ to the true value of inverted Hessian in the local optimum $f_{x x}^{-1}\left(x_{*}\right)$. Let's consider several schemes using iterative updating of B_{k} matrix in the following way:

$$
B_{k+1}=B_{k}+\Delta B_{k}
$$

Then if we use Taylor's approximation for the first order gradient, we get it:

$$
\nabla f\left(x_{k}\right)-\nabla f\left(x_{k+1}\right) \approx f_{x x}\left(x_{k+1}\right)\left(x_{k}-x_{k+1}\right)
$$

Quasi-Newton method

Now let's formulate our method as:

$$
\Delta x_{k}=B_{k+1} \Delta y_{k}, \text { where } \quad \Delta y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

in case you set the task of finding an update ΔB_{k} :

$$
\Delta B_{k} \Delta y_{k}=\Delta x_{k}-B_{k} \Delta y_{k}
$$

Broyden method

The simplest option is when the amendment ΔB_{k} has a rank equal to one. Then you can look for an amendment in the form

$$
\Delta B_{k}=\mu_{k} q_{k} q_{k}^{\top}
$$

where μ_{k} is a scalar and q_{k} is a non-zero vector. Then mark the right side of the equation to find ΔB_{k} for Δz_{k} :

$$
\Delta z_{k}=\Delta x_{k}-B_{k} \Delta y_{k}
$$

We get it:

$$
\begin{gathered}
\mu_{k} q_{k} q_{k}^{\top} \Delta y_{k}=\Delta z_{k} \\
\left(\mu_{k} \cdot q_{k}^{\top} \Delta y_{k}\right) q_{k}=\Delta z_{k}
\end{gathered}
$$

A possible solution is: $q_{k}=\Delta z_{k}, \mu_{k}=\left(q_{k}^{\top} \Delta y_{k}\right)^{-1}$.
Then an iterative amendment to Hessian's evaluation at each iteration:

$$
\Delta B_{k}=\frac{\left(\Delta x_{k}-B_{k} \Delta y_{k}\right)\left(\Delta x_{k}-B_{k} \Delta y_{k}\right)^{\top}}{\left\langle\Delta x_{k}-B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle}
$$

Davidon-Fletcher-Powell method

$$
\begin{aligned}
& \Delta B_{k}=\mu_{1} \Delta x_{k}\left(\Delta x_{k}\right)^{\top}+\mu_{2} B_{k} \Delta y_{k}\left(B_{k} \Delta y_{k}\right)^{\top} . \\
& \Delta B_{k}=\frac{\left(\Delta x_{k}\right)\left(\Delta x_{k}\right)^{\top}}{\left\langle\Delta x_{k}, \Delta y_{k}\right\rangle}-\frac{\left(B_{k} \Delta y_{k}\right)\left(B_{k} \Delta y_{k}\right)^{\top}}{\left\langle B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle} .
\end{aligned}
$$

Broyden-Fletcher-Goldfarb-Shanno method

$$
\begin{gathered}
\Delta B_{k}=Q U Q^{\top}, \quad Q=\left[q_{1}, q_{2}\right], \quad q_{1}, q_{2} \in \mathbb{R}^{n}, \quad U=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \\
\Delta B_{k}=\frac{\left(\Delta x_{k}\right)\left(\Delta x_{k}\right)^{\top}}{\left\langle\Delta x_{k}, \Delta y_{k}\right\rangle}-\frac{\left(B_{k} \Delta y_{k}\right)\left(B_{k} \Delta y_{k}\right)^{\top}}{\left\langle B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle}+p_{k} p_{k}^{\top}
\end{gathered}
$$

Code

- Open In Colab

Code

- Open In Colab
- Comparison of quasi Newton methods

Natural Gradient Descent

K-FAC

[^0]: ${ }^{\text {a }}$ Literally we aim to solve the problem of finding stationary points $\nabla f(x)=0$

