Newton method. Quasi-Newton methods. K-FAC

Daniil Merkulov

Optimization methods. MIPT

Idea of Newton method of root finding

Consider the function $\varphi(x) : \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

We get an iterative scheme:

$$x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.$$

Which will become a Newton optimization method in case $f'(x) = \varphi(x)^a$:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

 $^a\mbox{Literally}$ we aim to solve the problem of finding stationary points $\nabla f(x)=0$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $\tilde{f}(x)$, i.e. $\nabla \tilde{f}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

$$\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)$$

$$\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).$$

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for the method to exist), as well as its positive definiteness (for the convergence guarantee).

Newton method as a local quadratic Taylor approximation minimizer f(x)0 x_{k+1} x_k

Newton method

 $\rightarrow \min_{x,y,z}$

♥ ೧ Ø 4

Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq LI_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is *M*-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq LI_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is *M*-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq LI_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is *M*-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$abla f(x_k) -
abla f(x^*) = \int_0^1
abla^2 f(x^* + au(x_k - x^*))(x_k - x^*) d au$$

Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq LI_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is *M*-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$abla f(x_k) -
abla f(x^*) = \int_0^1
abla^2 f(x^* + au(x_k - x^*))(x_k - x^*) d au$$

2. Then we track the distance to the solution

$$x_{k+1} - x^* = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) - x^* = x_k - x^* - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) =$$
$$= x_k - x^* - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right)\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} G_k(x_k - x^*)$$

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right)\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} G_k(x_k - x^*)$$

4. We have introduced:

$$G_{k} = \int_{0}^{1} \left(\nabla^{2} f(x_{k}) - \nabla^{2} f(x^{*} + \tau(x_{k} - x^{*})) d\tau \right).$$

5. Let's try to estimate the size of G_k :

$$\|G_k\| = \left\|\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*))d\tau\right)\right\| \le C_k$$

 $\leq \int_0^1 \left\| \nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) \right\| d\tau \leq \qquad \text{(Hessian's Lipschitz continuity)}$

$$\leq \int_0^1 M \|x_k - x^* - \tau (x_k - x^*)\| d\tau = \int_0^1 M \|x_k - x^*\| (1 - \tau) d\tau = \frac{r_k}{2} M,$$

where $r_k = ||x_k - x^*||$.

5. Let's try to estimate the size of G_k :

$$\|G_k\| = \left\| \int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right) \right\| \le$$

 $\leq \int_0^1 \left\| \nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) \right\| d\tau \leq \qquad \text{(Hessian's Lipschitz continuity)}$

$$\leq \int_0^1 M \|x_k - x^* - \tau (x_k - x^*)\| d\tau = \int_0^1 M \|x_k - x^*\| (1 - \tau) d\tau = \frac{r_k}{2} M,$$

where $r_k = ||x_k - x^*||$.

6. So, we have:

$$r_{k+1} \leq \left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \cdot \frac{r_k}{2} M \cdot r_k$$

and we need to bound the norm of the inverse hessian

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^2 f(x_k) - \nabla^2 f(x^*) \succeq -Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq \nabla^2 f(x^*) - Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq \mu I_n - Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq (\mu - Mr_k) I_n$$

Convexity implies $\nabla^2 f(x_k) \succ 0$, i.e. $r_k < \frac{\mu}{M}$.

$$\left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \le (\mu - Mr_k)^{-1}$$
$$r_{k+1} \le \frac{r_k^2 M}{2(\mu - Mr_k)}$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^2 f(x_k) - \nabla^2 f(x^*) \succeq -Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq \nabla^2 f(x^*) - Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq \mu I_n - Mr_k I_n$$
$$\nabla^2 f(x_k) \succeq (\mu - Mr_k) I_n$$

Convexity implies $\nabla^2 f(x_k) \succ 0$, i.e. $r_k < \frac{\mu}{M}$.

$$\left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \le (\mu - Mr_k)^{-1}$$
$$r_{k+1} \le \frac{r_k^2 M}{2(\mu - Mr_k)}$$

8. The convergence condition $r_{k+1} < r_k$ imposes additional conditions on r_k : $r_k < \frac{2\mu}{3M}$

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian converges **quadratically** near $(||x_0 - x^*|| < \frac{2\mu}{3M})$ to the solution.

What's nice:

• quadratic convergence near the solution x^*

What's nice:

- quadratic convergence near the solution x^*
- affine invariance

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: ${\cal O}(n^2)$ memory

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- the Hessian can be degenerate at x^*

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

- it is necessary to store the (inverse) hessian on each iteration: ${\cal O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- the Hessian can be degenerate at x^{*}
- the hessian may not be positively determined \rightarrow direction $-(f''(x))^{-1}f'(x)$ may not be a descending direction

Newton method problems

Newton method problems

Figure 8: Illustration

The idea of adapive metrics

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x, x_0) = \varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x, x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Let us assume that the distance is defined locally by some metric A:

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

Let us also consider first order Taylor approximation of a function f(x) near the point x_0 :

$$f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^{\top} \delta x$$

 $f \rightarrow \min_{x,y,z}$ Newton method

Now we can explicitly pose a problem of finding s, as it was stated above.

$$\min_{\delta x \in \mathbb{R}^{\ltimes}} f(x_0 + \delta x)$$
s.t. $\delta x^{\top} A \delta x = \varepsilon^2$

Using equation (1 it can be written as:

$$\min_{\delta x \in \mathbb{R}^{\ltimes}} \nabla f(x_0)^{\top} \delta x$$
s.t. $\delta x^{\top} A \delta x = \varepsilon^2$

Using Lagrange multipliers method, we can easily conclude, that the answer is:

$$\delta x = -\frac{2\varepsilon^2}{\nabla f(x_0)^\top A^{-1} \nabla f(x_0)} A^{-1} \nabla f$$

- Which means, that new direction of steepest descent is nothing else, but $A^{-1}\nabla f(x_0)$.
- (1) Indeed, if the space is isotropic and A = I, we immediately have gradient descent formula, while Newton method uses local Hessian as a metric matrix. $\heartsuit \ \bigcirc \ \odot \$

Quasi-Newton methods intuition

For the classic task of unconditional optimization $f(x) \to \min_{x \in \mathbb{R}^n}$ the general scheme of iteration method is written as:

 $x_{k+1} = x_k + \alpha_k s_k$

In the Newton method, the s_k direction (Newton's direction) is set by the linear system solution at each step:

$$s_k = -B_k \nabla f(x_k), \quad B_k = f_{xx}^{-1}(x_k)$$

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of $B_k = I_n$ as B_k at each step, we will exactly get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the B_k matrix so that it tends in some sense at $k \to \infty$ to the true value of inverted Hessian in the local optimum $f_{xx}^{-1}(x_*)$. Let's consider several schemes using iterative updating of B_k matrix in the following way:

$$B_{k+1} = B_k + \Delta B_k$$

Then if we use Taylor's approximation for the first order gradient, we get it:

$$\nabla f(x_k) - \nabla f(x_{k+1}) \approx f_{xx}(x_{k+1})(x_k - x_{k+1}).$$

Now let's formulate our method as:

$$\Delta x_k = B_{k+1} \Delta y_k$$
, where $\Delta y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$

in case you set the task of finding an update ΔB_k :

$$\Delta B_k \Delta y_k = \Delta x_k - B_k \Delta y_k$$

Broyden method

The simplest option is when the amendment ΔB_k has a rank equal to one. Then you can look for an amendment in the form

$$\Delta B_k = \mu_k q_k q_k^{\top}.$$

where μ_k is a scalar and q_k is a non-zero vector. Then mark the right side of the equation to find ΔB_k for Δz_k :

$$\Delta z_k = \Delta x_k - B_k \Delta y_k$$

We get it:

$$\mu_k q_k q_k^{ op} \Delta y_k = \Delta z_k \ \left(\mu_k \cdot q_k^{ op} \Delta y_k
ight) q_k = \Delta z_k$$

A possible solution is: $q_k = \Delta z_k$, $\mu_k = \left(q_k^\top \Delta y_k\right)^{-1}$.

Then an iterative amendment to Hessian's evaluation at each iteration:

$$\Delta B_k = \frac{(\Delta x_k - B_k \Delta y_k)(\Delta x_k - B_k \Delta y_k)^\top}{\langle \Delta x_k - B_k \Delta y_k, \Delta y_k \rangle}.$$

Davidon-Fletcher-Powell method

$$\Delta B_k = \mu_1 \Delta x_k (\Delta x_k)^\top + \mu_2 B_k \Delta y_k (B_k \Delta y_k)^\top.$$
$$\Delta B_k = \frac{(\Delta x_k) (\Delta x_k)^\top}{\langle \Delta x_k, \Delta y_k \rangle} - \frac{(B_k \Delta y_k) (B_k \Delta y_k)^\top}{\langle B_k \Delta y_k, \Delta y_k \rangle}.$$

Broyden-Fletcher-Goldfarb-Shanno method

$$\Delta B_k = QUQ^{\top}, \quad Q = [q_1, q_2], \quad q_1, q_2 \in \mathbb{R}^n, \quad U = \begin{pmatrix} a & c \\ c & b \end{pmatrix}.$$
$$\Delta B_k = \frac{(\Delta x_k)(\Delta x_k)^{\top}}{\langle \Delta x_k, \Delta y_k \rangle} - \frac{(B_k \Delta y_k)(B_k \Delta y_k)^{\top}}{\langle B_k \Delta y_k, \Delta y_k \rangle} + p_k p_k^{\top}.$$

Code

• Open In Colab

Code

- Open In Colab
- Comparison of quasi Newton methods

Natural Gradient Descent

K-FAC

