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Finite-sum problem
We consider classic finite-sample average minimization:

min
x∈Rp

f(x) = min
x∈Rp

1
n

n∑
i=1

fi(x)

The gradient descent acts like follows:

xk+1 = xk − αk

n

n∑
i=1

∇fi(x) (GD)

• Iteration cost is linear in n.

• Convergence with constant α or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose ik index of point
at each iteration uniformly:

xk+1 = xk − αk∇fik (xk) (SGD)
With p(ik = i) = 1

n
, the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇fik (x)] =
n∑

i=1

p(ik = i)∇fi(x) =
n∑

i=1

1
n

∇fi(x) = 1
n

n∑
i=1

∇fi(x) = ∇f(x)

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/ε)) O(1/ε)

Convex O(1/ε) O(1/ε2)
Non-Convex O(1/ε) O(1/ε2)

• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.
• Bounds are unimprovable under standard assumptions.
• Oracle returns an unbiased gradient approximation with bounded variance.

• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve
constant factors (bottleneck is variance, not condition number).
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Typical behaviour
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Convergence
Lipschitz continiity implies:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

using (SGD):
f(xk+1) ≤ f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2

k
L

2 ∥∇fik (xk)∥2

Now let’s take expectation with respect to ik:

E[f(xk+1)] ≤ E[f(xk) − αk⟨∇f(xk), ∇fik (xk)⟩ + α2
k

L

2 ∥∇fik (xk)∥2]

Using linearity of expectation:

E[f(xk+1)] ≤ f(xk) − αk⟨∇f(xk),E[∇fik (xk)]⟩ + α2
k

L

2 E[∥∇fik (xk)∥2]

Since uniform sampling implies unbiased estimate of gradient: E[∇fik (xk)] = ∇f(xk):

E[f(xk+1)] ≤ f(xk) − αk∥∇f(xk)∥2 + α2
k

L

2 E[∥∇fik (xk)∥2]
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Convergence. Smooth PL case.

1
2∥∇f(x)∥2

2 ≥ µ(f(x) − f∗), ∀x ∈ Rp (PL)

This inequality simply requires that the gradient grows faster than a quadratic function as we move away from the
optimal function value. Note, that strong convexity implies PL, but not vice versa. Using PL we can write:

E[f(xk+1)] − f∗ ≤ (1 − 2αkµ)[f(xk) − f∗] + α2
k

L

2 E[∥∇fik (xk)∥2]

This bound already indicates, that we have something like linear convergence if far from solution and gradients are
similar, but no progress if close to solution or have high variance in gradients at the same time. Now we assume,
that the variance of the stochastic gradients is bounded:

E[∥∇fi(xk)∥2] ≤ σ2

Thus, we have

E[f(xk+1) − f∗] ≤ (1 − 2αkµ)[f(xk) − f∗] + Lσ2α2
k

2 .
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Convergence. Smooth PL case.
1. Consider decreasing stepsize strategy with αk = 2k+1

2µ(k+1)2 we obtain

E[f(xk+1) − f∗] ≤ k2

(k + 1)2 [f(xk) − f∗] + Lσ2(2k + 1)2|
8µ2(k + 1)4

2. Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) + Lσ2(2k + 1)2

8µ2(k + 1)2

≤ δf (k) + Lσ2

2µ2 ,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from k = 0 to k and using the fact

that δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + Lσ2

2µ2

k∑
i=0

1 ≤ Lσ2(k + 1)
2µ2 ⇒ (k + 1)2E[f(xk+1) − f∗] ≤ Lσ2(k + 1)

2µ2

which gives the stated rate.
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Convergence. Smooth PL case.

3. Constant step size: Choosing αk = α for any α < 1/2µ yields

E[f(xk+1) − f∗] ≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

k∑
i=0

(1 − 2αµ)i

≤ (1 − 2αµ)k[f(x0) − f∗] + Lσ2α2

2

∞∑
i=0

(1 − 2αµ)i

= (1 − 2αµ)k[f(x0) − f∗] + Lσ2α

4µ
,

where the last line uses that α < 1/2µ and the limit of the geometric series.
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Convergence. Smooth non-convex case.
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Convergence. Convex case.
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Mini-batch SGD
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