
Stories from modern Machine Learning from the optimization perspective

Daniil Merkulov

Optimization methods. MIPT

v § } 1

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Optimization for Neural Network training

Neural network is a function, that takes an input x and current set of weights (parameters) w and predicts some
vector as an output. Note, that a variety of feed-forward neural networks could be represented as a series of linear
transformations, followed by some nonlinear function (say, ReLU (x) or sigmoid):

N N (w, x) = σL ◦ wL ◦ . . . ◦ σ1 ◦ w1 ◦ x w = (W1, b1, . . . WL, bL) ,

where L is the number of layers, σi - non-linear activation function, wi = Wix + bi - linear layer.

Typically, we aim to find w in order to solve some problem (let say to be N N (w, xi) ∼ yi for some training data
xi, yi). In order to do it, we solve the optimization problem:

L(w, X, y) → min
w

1
N

N∑
i=1

l(w, xi, yi) → min
w

General introduction v § } 2

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Loss functions
In the context of training neural networks, the loss function, denoted by l(w, xi, yi), measures the discrepancy
between the predicted output N N (w, xi) and the true output yi. The choice of the loss function can significantly
influence the training process. Common loss functions include:

Mean Squared Error (MSE)
Used primarily for regression tasks. It computes the square of the difference between predicted and true values,
averaged over all samples.

MSE(w, X, y) = 1
N

N∑
i=1

(N N (w, xi) − yi)2

Cross-Entropy Loss
Typically used for classification tasks. It measures the dissimilarity between the true label distribution and the
predictions, providing a probabilistic interpretation of classification.

Cross-Entropy(w, X, y) = − 1
N

N∑
i=1

C∑
c=1

yi,c log(N N (w, xi)c)

where yi,c is a binary indicator (0 or 1) if class label c is the correct classification for observation i, and C is the
number of classes.

General introduction v § } 3

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Simple example: Fashion MNIST classification problem

0 100 200 300 400 500 600
Iteration

100

101

102

Cr
os

s-
en

tro
py

Train Loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 100 200 300 400 500 600
Iteration

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Train Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6
Time (s)

100

101

102

Cr
os

s-
en

tro
py

Test loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6 8 10
Epoch

100

101

102

Cr
os

s-
en

tro
py

Test Loss
SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6 8 10
Epoch

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
Test Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

0 2 4 6
Time (s)

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Test Accuracy

SGD
Adam
SGD Momentum
SGD Nesterov

Training a Neural Network on Fashion MNIST.
79510 trainable parameters.

Figure 1: 3Open in colabGeneral introduction v § } 4

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_optimization.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Visualizing loss surface of neural network via line projection

We denote the initial point as w0, representing the weights of the neural network at initialization. The weights after
training are denoted as ŵ.

Initially, we generate a random Gaussian direction w1 ∈ Rp, which inherits the magnitude of the original neural
network weights for each parameter group. Subsequently, we sample the training and testing loss surfaces at points
along the direction w1, situated close to either w0 or ŵ.

Mathematically, this involves evaluating:

L(α) = L(w0 + αw1), where α ∈ [−b, b].

Here, α plays the role of a coordinate along the w1 direction, and b stands for the bounds of interpolation.
Visualizing L(α) enables us to project the p-dimensional surface onto a one-dimensional axis.

It is important to note that the characteristics of the resulting graph heavily rely on the chosen projection direction.
It’s not feasible to maintain the entirety of the information when transforming a space with 100,000 dimensions into
a one-dimensional line through projection. However, certain properties can still be established. For instance, if
L(α) |α=0 is decreasing, this indicates that the point lies on a slope. Additionally, if the projection is non-convex, it
implies that the original surface was not convex.

Loss surface of Neural Networks v § } 5

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Visualizing loss surface of neural network

Figure 2: 3Open in colab
Loss surface of Neural Networks v § } 6

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Visualizing loss surface of neural network

Figure 3: 3Open in colab
Loss surface of Neural Networks v § } 6

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Plane projection
We can explore this idea further and draw the projection of the loss surface to the plane, which is defined by 2
random vectors. Note, that with 2 random gaussian vectors in the huge dimensional space are almost certainly
orthogonal. So, as previously, we generate random normalized gaussian vectors w1, w2 ∈ Rp and evaluate the loss
function

L(α, β) = L(w0 + αw1 + βw2), where α, β ∈ [−b, b]2.

Figure 4: 3Open in colabLoss surface of Neural Networks v § } 7

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/NN_Surface_Visualization.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Can plane projections be useful? 1

Figure 5: The loss surface of ResNet-56
without skip connections Figure 6: The loss surface of ResNet-56 with skip connections

1Visualizing the Loss Landscape of Neural Nets, Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein
Loss surface of Neural Networks v § } 8

https://arxiv.org/abs/1712.09913
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Can plane projections be useful, really? 2

Figure 7: Examples of a loss landscape of a typical CNN model on FashionMNIST and CIFAR10 datasets found with MPO.
Loss values are color-coded according to a logarithmic scale

2Loss Landscape Sightseeing with Multi-Point Optimization, Ivan Skorokhodov, Mikhail Burtsev
Loss surface of Neural Networks v § } 9

https://arxiv.org/abs/1910.03867
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?

• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in
a given layer. Symmetry breaking.

• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton

Loss surface of Neural Networks v § } 10

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?
• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in

a given layer. Symmetry breaking.

• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton

Loss surface of Neural Networks v § } 10

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Impact of initialization 3

� Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a “good”
solution hard, requires careful tuning.

• Don’t initialize all weights to be the same — why?
• Random: Initialize randomly, e.g., via the Gaussian N(0, σ2), where std σ depends on the number of neurons in

a given layer. Symmetry breaking.
• One can find more useful advices here

3On the importance of initialization and momentum in deep learning Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton
Loss surface of Neural Networks v § } 10

https://cs231n.github.io/neural-networks-2/
https://proceedings.mlr.press/v28/sutskever13.html
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Impact of initialization 4

0 0.5 1 1.5 2 2.5 3
0.75

0.8

0.85

0.9

0.95

1

Epoch

E
rr

or

 

 

----------

----------

ours

Xavier

Figure 8: 22-layer ReLU net: good init converges faster

0 1 2 3 4 5 6 7 8 9

0.75

0.8

0.85

0.9

0.95

Epoch

E
rr

or

 

 

----------

----------

ours

Xavier

Figure 9: 30-layer ReLU net: good init is able to converge

4Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun

Loss surface of Neural Networks v § } 11

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Grokking 5

Figure 10: Training transformer with 2 layers, width 128, and 4 attention heads, with a total of about 4 · 105 non-embedding
parameters. Reproduction of experiments (~ half an hour) is available here

5Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin,
Vedant Misra

Loss surface of Neural Networks v § } 12

https://colab.research.google.com/drive/1r3Wg84XECq57fT2B1dvHLSJrJ2sjIDCJ?usp=sharing
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Double Descent 6
R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

6Reconciling modern machine learning practice and the bias-variance trade-off, Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal
Loss surface of Neural Networks v § } 13

https://arxiv.org/abs/1812.11118
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Exponential learning rate

• Exponential Learning Rate Schedules for Deep Learning

Loss surface of Neural Networks v § } 14

http://www.offconvex.org/2020/04/24/ExpLR1/
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop

• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease
exponentially fast and tend to vanish (hurting learning in lower layers much more)

• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients
are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)

• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients
are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)
• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients

are unstable.

• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Gradient Vanishing/Exploding

• Multiplication of a chain of matrices in backprop
• If several of these matrices are “small” (i.e., norms < 1), when we multiply them, the gradient will decrease

exponentially fast and tend to vanish (hurting learning in lower layers much more)
• Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients

are unstable.
• Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Automatic Differentiation stories v § } 15

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Feedforward Architecture

Forward pass

Backward pass

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Automatic Differentiation stories v § } 16

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Feedforward Architecture

Forward pass

Backward pass

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Automatic Differentiation stories v § } 16

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Vanilla backpropagation

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Automatic Differentiation stories v § } 17

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Memory poor backpropagation

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Automatic Differentiation stories v § } 18

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Checkpointed backpropagation
checkpoint

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Automatic Differentiation stories v § } 19

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §

Automatic Differentiation stories v § } 20

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz


Large batch training

Large batch training v § } 21

https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

	General introduction
	Loss surface of Neural Networks
	Automatic Differentiation stories
	Large batch training

