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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.

R Somin ot Flow


https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the

function on the Euclidian ball
min Vf(xo) ' 6z

dxeR™

s.t. 6z 6z = &2
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the
function on the Euclidian ball
min Vf(xo) ' 6z
dxeR™
s.t. ' dx =&

® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

‘f‘”.,l.‘.jr; Gradient Flow @0 O


https://fmin.xyz
https://mipt23.fmin.xyz
https://github.com/MerkulovDaniil/mipt23
https://t.me/fminxyz

Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the
function on the Euclidian ball
min Vf(xo) ' 6z

Sz ER™
T 2
st.ox dx=c¢

® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

Tht1 = xk — ax V[ (Tk)
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the
function on the Euclidian ball
min Vf(xo) ' 6z

dxeR™
st. oz oz =2
® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.
Tht1 = xk — ax V[ (Tk)

T+1 — Tk = —aka(xk)
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the

function on the Euclidian ball
min Vf(xo) ' 6z
dxeR™
st. oz oz =2
® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

Tht1 = xk — ax V[ (Tk)

T+1 — Tk = —aka(xk)
Tkl — Tk
- Vf(zk)
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the

function on the Euclidian ball
min Vf(xo) ' 6z
dxeR™
st. oz oz =2
® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

Tht1 = xk — ax V[ (Tk)

T+1 — Tk = —aka(xk)
Tkl — Tk
- Vf(zk)

® The gradient flow is essentially the limit of gradient descent when the step-size oy tends to zero
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the

function on the Euclidian ball
min Vf(xo) ' 6z
dxeR™
st. oz oz =2
® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

Tht1 = xk — ax V[ (Tk)

T+1 — Tk = —aka(xk)
Tkl — Tk
- Vf(zk)

® The gradient flow is essentially the limit of gradient descent when the step-size oy tends to zero
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Gradient Flow intuition

® Antigradient —V f(z) indicates the direction of steepest descent at the point x.
® Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the

function on the Euclidian ball
min Vf(xo) ' 6z
dxeR™
st. oz oz =2
® The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

Tht1 = xk — ax V[ (Tk)

T+1 — Tk = —Oszf(:Ek)
Tkl — Tk
- Vf(zk)

® The gradient flow is essentially the limit of gradient descent when the step-size oy tends to zero

dx
at = -V f(z)
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Gradient Flow
e Simplified analyses. The gradient flow

1 00 has no step-size, so all the traditional
s annoying issues regarding the choice of

R
N step-size, with line-search, constant,
\, descent 20 decreasing or with a weird schedule are
—flow unnecessary.
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Gradient Flow
¢ Simplified analyses. The gradient flow

1 00 has no step-size, so all the traditional
s annoying issues regarding the choice of
step-size, with line-search, constant,
decreasing or with a weird schedule are
unnecessary.
® Analytical solution in some cases. For
15 example, one can consider quadratic
problem with linear gradient, which will
form a linear ODE with known exact
formula.
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Gradient Flow
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Figure 1: @€Source

Gradient Flow

¢ Simplified analyses. The gradient flow
has no step-size, so all the traditional
annoying issues regarding the choice of
step-size, with line-search, constant,
decreasing or with a weird schedule are
unnecessary.

® Analytical solution in some cases. For
example, one can consider quadratic
problem with linear gradient, which will
form a linear ODE with known exact
formula.

® Different discretization leads to
different methods. We will see, that the
continuous-time object is pretty rich in
terms of the variety of produced
algorithms. Therefore, it is interesting to
study optimization from this perspsective.
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Gradient Flow discretization
Consider Gradient Flow ODE:

Explicit Euler discretization:

R fomin ot Flow
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Gradient Flow discretization

Consider Gradient Flow ODE: p
T

dt
Explicit Euler discretization:

Th+1 — Tk _
0 = V(=)

Leads to ordinary Gradient Descent method
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Gradient Flow discretization

Consider Gradient Flow ODE: p
T
a = V@

Explicit Euler discretization: Implicit Euler discretization:

Thit — Tk _ —V (@) 7““&_ L —V f(zrt1)
a

Leads to ordinary Gradient Descent method
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Gradient Flow discretization

Consider Gradient Flow ODE: p
T
a = V@

Explicit Euler discretization: Implicit Euler discretization:

Thit — Tk _ —V (@) 7““&_ L —V f(zrt1)
a

Tk+1 — Tk
a

Leads to ordinary Gradient Descent method +Vf(zre1) =0
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Gradient Flow discretization
Consider Gradient Flow ODE:

dx
i =Vf(z)
Explicit Euler discretization: Implicit Euler discretization:
_ x -z
Thit — Tk _ —V (@) L2k — VS (zr41)
e e
Leads to ordinary Gradient Descent method Thtl — Tk +Vf(zrs1) =0
a
V@) =0

T=Th 41
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Gradient Flow discretization
Consider Gradient Flow ODE:

Explicit Euler discretization:

Th+1 — Tk _
0 = V(=)

Leads to ordinary Gradient Descent method

‘f -+ ].".}2 Gradient Flow

dx
i =-Vf(z)

Implicit Euler discretization:
x —z
% = —Vf(zr1)

LH—IO; Tk + Vf(zp+1) =0

x%’ww(x) =0

T=Th 41

=0

T=Tg41

V [5olle -l + )]
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Gradient Flow discretization
Consider Gradient Flow ODE:

Explicit Euler discretization:

Th+1 — Tk _
0 = V(=)

Leads to ordinary Gradient Descent method

‘f -+ ].".}2 Gradient Flow

dx
i =-Vf(z)

Implicit Euler discretization:
x —z
% = —Vf(zr1)

LH—IO; Tk + Vf(zp+1) =0

x%’ww(x) =0

T=Th 41

1

=0
2«

T=Tg41

V [5qlle = aull3 + f(@)]

. 1
Ti+1 = arg min [f(ac) + %Hx - mk||§}
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Gradient Flow discretization
Consider Gradient Flow ODE:

Explicit Euler discretization:

Th+1 — Tk _
0 = V(=)

Leads to ordinary Gradient Descent method
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dx
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Implicit Euler discretization:
x —z
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T=Th 41
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Gradient Flow discretization
Consider Gradient Flow ODE:

Explicit Euler discretization:

Thil =Tk _
— Vf(xk)

Leads to ordinary Gradient Descent method

dx
ar =-Vf(z)

Implicit Euler discretization:
x —z
% = —Vf(zr1)

7171@.,_10; Tk + Vf(zp+1) =0

%+Vf(w) =0

T=Tg 41

1

=0
2«

T=Tg41

V [5qlle = aull3 + f@)]

. 1
Ti+1 = arg min [f(ac) + %Hx - xk||§}

! Proximal operator

X 1
proxaf(xk) = arg min [ozf(w) + =l — xk||§}
T ER™ 2
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

@ 5w = V@)™ 20 = @B <o
If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded
from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

@ 5w = V@)™ 20 = @B <o
If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded
from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:

f@) 2 fQ+Vi) (x-y) = VI (@-y) < fl2) - f)
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

@ 5w = V@)™ 20 = @B <o
If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded
from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:
f@) 2 fQ+Vi) (x-y) = VI (@-y) < fl2) - f)

3. Finally, using convexity:

%[Hx(t) — "] = —2(2(t) — 2") TV F(2(t) < ~2[f(2(t) — /7]
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

d dx(t
LIa0) = Vo) B = v <o,
dt dt

If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded

from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:
f@) 2 fQ+Vi) (x-y) = VI (@-y) < fl2) - f)

3. Finally, using convexity:

d * * *
T [lz(t) = 2"|*] = =2(2(t) — ") "V f(2(t)) < —2[f(2(t) — ]
4. Leading to, by integrating from O to ¢, and using the monotonicity of f(z(t)):

1

) =57 < ¢ [ ) = £ )dn < gl =" = gk =1 < 55 le0) =7
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

d dx(t
LIa0) = Vo) B = v <o,
dt dt

If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded

from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:
f@) 2 fQ+Vi) (x-y) = VI (@-y) < fl2) - f)

3. Finally, using convexity:

d * * *
T [lz(t) = 2"|*] = =2(2(t) — ") "V f(2(t)) < —2[f(2(t) — ]
4. Leading to, by integrating from O to ¢, and using the monotonicity of f(z(t)):

1

) =57 < ¢ [ ) = £ )dn < gl =" = gk =1 < 55 le0) =7
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

d dx(t
LIa0) = Vo) B = v <o,
dt dt

If f is bounded from below, then f(z(t)) will always converge as a non-increasing function which is bounded

from below. It is straightforward, that GF converges to the stationary point, where V f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:
f@) 2 fQ+Vi) (x-y) = VI (@-y) < fl2) - f)

3. Finally, using convexity:

%[Hx(t) — "] = —2(2(t) — 2") TV F(2(t) < ~2[f(2(t) — /7]

4. Leading to, by integrating from O to ¢, and using the monotonicity of f(z(t)):

) =57 < ¢ [ ) = £ )dn < gl =" = gk =1 < 55 le0) =7

We recover the usual rates in O (%) with ¢t = an.
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Convergence analysis. PL case.

1. The analsysis is straightforward. Suppose, the function satisfies PL-condition:

IVF@)II* 2 2u(f(2) — f7) vz
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Convergence analysis. PL case.

1. The analsysis is straightforward. Suppose, the function satisfies PL-condition:
IVf(@)° > 2p(f(z) = f7) Va

2. Then p
[F(®) = f(@)] = Vi) i) = ~|Vfe@)E < ~2u[f(@) - f]

dt
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Convergence analysis. PL case.

1. The analsysis is straightforward. Suppose, the function satisfies PL-condition:
IVf(@)° > 2p(f(z) = f7) Va

2. Then p
S @®) = f@)] = Vi) @) = —IVie@®)E < —2u[fz®) -]

3. Finally,
f(@(t)) = f* < exp(—2ut) [f(x(0)) — £7],
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Accelerated Gradient Flow

Remember one of the forms of Nesterov Accelerated Gradient
Tht1 = yr — eV (yx)

k—1

k42

Yk = Tk + (xk — Tr—1)
The corresponding ! ODE is:

. 3.
Xt + ?Xt + V(X)) =0

LA Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights, Weijie Su, Stephen Boyd, Emmanuel J.
Candes
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Stochastic Gradient Flow

d
How to model stochasticity in the continuous process? A simple idea would be: &% = —V f(x) + & with variety of

dt
options for &, for example & ~ N(0,0%) ~ o> N(0,1).

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

dz(t) = =V [ (z(¢)) dt + cdW ()

Here dW (t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic
process above in two possible ways:

® Watching the trajectories of z(t)

‘f -+ ].".}I; Stochastic Gradient Flow 0 O
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Stochastic Gradient Flow

d
How to model stochasticity in the continuous process? A simple idea would be: &% = —V f(x) + & with variety of

dt
options for &, for example & ~ N(0,0%) ~ o> N(0,1).

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

dz(t) = =V [ (z(¢)) dt + cdW ()

Here dW (t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic
process above in two possible ways:

® Watching the trajectories of z(t)
® Watching the evolution of distribution density function of p(t)
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Stochastic Gradient Flow

d
How to model stochasticity in the continuous process? A simple idea would be: &% = —V f(x) + & with variety of

dt
options for &, for example & ~ N(0,0%) ~ o> N(0,1).

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

dz(t) = =V [ (z(¢)) dt + cdW ()

Here dW (t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic
process above in two possible ways:

® Watching the trajectories of z(t)
® Watching the evolution of distribution density function of p(t)
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Stochastic Gradient Flow

d
How to model stochasticity in the continuous process? A simple idea would be: &% = —V f(x) + & with variety of

dt
options for &, for example & ~ N(0,0%) ~ o> N(0,1).

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

dz(t) = =V f (z(t)) dt + odW (1)
Here dW (t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic
process above in two possible ways:

® Watching the trajectories of z(t)
® Watching the evolution of distribution density function of p(t)

! Fokker-Planck equation
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Sources

® Francis Bach blog
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Sources

® Francis Bach blog
® Off convex Path blog
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Sources

® Francis Bach blog
® Off convex Path blog
® Stochastic gradient algorithms from ODE splitting perspective
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Sources

Francis Bach blog

Off convex Path blog

Stochastic gradient algorithms from ODE splitting perspective
NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
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