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Gradient Flow intuition
• Antigradient −∇f(x) indicates the direction of steepest descent at the point x.

• Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the
function on the Euclidian ball

min
δx∈Rn

∇f(x0)⊤δx

s.t. δx⊤δx = ε2

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

xk+1 = xk − αk∇f(xk)
xk+1 − xk = −αk∇f(xk)
xk+1 − xk

αk
= −∇f(xk)

• The gradient flow is essentially the limit of gradient descent when the step-size αk tends to zero

,
dx

dt
= −∇f(x)
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Gradient Flow

Figure 1: ÅSource

• Simplified analyses. The gradient flow
has no step-size, so all the traditional
annoying issues regarding the choice of
step-size, with line-search, constant,
decreasing or with a weird schedule are
unnecessary.

• Analytical solution in some cases. For
example, one can consider quadratic
problem with linear gradient, which will
form a linear ODE with known exact
formula.

• Different discretization leads to
different methods. We will see, that the
continuous-time object is pretty rich in
terms of the variety of produced
algorithms. Therefore, it is interesting to
study optimization from this perspsective.
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Gradient Flow discretization
Consider Gradient Flow ODE:

dx

dt
= −∇f(x)

Explicit Euler discretization:

xk+1 − xk

α
= −∇f(xk)

Leads to ordinary Gradient Descent method

Implicit Euler discretization:

xk+1 − xk

α
= −∇f(xk+1)

xk+1 − xk

α
+ ∇f(xk+1) = 0

x − xk

α
+ ∇f(x)

∣∣∣
x=xk+1

= 0

∇
[ 1

2α
∥x − xk∥2

2 + f(x)
]∣∣∣

x=xk+1

= 0

xk+1 = arg min
x∈Rn

[
f(x) + 1

2α
∥x − xk∥2

2

]

, Proximal operator

proxαf (xk) = arg min
x∈Rn

[
αf(x) + 1

2∥x − xk∥2
2

]
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Convergence analysis. Convex case.
1. Simplest proof of monotonic decrease of GF:

d

dt
f(x(t)) = ∇f(x(t))⊤ dx(t)

dt
= −∥∇f(x(t))∥2

2 ⩽ 0.

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded
from below. It is straightforward, that GF converges to the stationary point, where ∇f = 0 (potentailly
including minima, maxima and saddle points).

2. If we additionaly have convexity:

f(x) ⩾ f(y) + ∇f(y)⊤(x − y) ⇒ ∇f(y)⊤(x − y) ⩽ f(x) − f(y)

3. Finally, using convexity:
d

dt

[
∥x(t) − x∗∥2]

= −2(x(t) − x∗)⊤∇f(x(t)) ⩽ −2
[
f(x(t)) − f∗]

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

f(x(t)) − f∗ ⩽
1
t

∫ t

0

[
f(x(u)) − f∗]

du ⩽
1
2t

∥x(0) − x∗∥2 − 1
2t

∥x(t) − x∗∥2 ⩽
1
2t

∥x(0) − x∗∥2.

We recover the usual rates in O
(

1
n

)
, with t = αn.
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= −2(x(t) − x∗)⊤∇f(x(t)) ⩽ −2
[
f(x(t)) − f∗]

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

f(x(t)) − f∗ ⩽
1
t

∫ t

0

[
f(x(u)) − f∗]

du ⩽
1
2t

∥x(0) − x∗∥2 − 1
2t

∥x(t) − x∗∥2 ⩽
1
2t

∥x(0) − x∗∥2.

We recover the usual rates in O
(

1
n

)
, with t = αn.
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Convergence analysis. PL case.

1. The analsysis is straightforward. Suppose, the function satisfies PL-condition:

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x

2. Then
d

dt

[
f(x(t)) − f(x∗)

]
= ∇f(x(t))⊤ẋ(t) = −∥∇f(x(t))∥2

2 ⩽ −2µ
[
f(x(t)) − f∗]

3. Finally,
f(x(t)) − f∗ ⩽ exp(−2µt)

[
f(x(0)) − f∗]

,

Gradient Flow v § } 6
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Accelerated Gradient Flow

Remember one of the forms of Nesterov Accelerated Gradient

xk+1 = yk − ϵ∇f(yk)

yk = xk + k − 1
k + 2(xk − xk−1)

The corresponding 1 ODE is:

Ẍt + 3
t

Ẋt + ∇f(Xt) = 0

1A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights, Weijie Su, Stephen Boyd, Emmanuel J.
Candes
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Stochastic Gradient Flow

How to model stochasticity in the continuous process? A simple idea would be: dx

dt
= −∇f(x) + ξ with variety of

options for ξ, for example ξ ∼ N (0, σ2) ∼ σ2N (0, 1).

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

dx(t) = −∇f (x(t)) dt + σdW (t)

Here dW (t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic
process above in two possible ways:

• Watching the trajectories of x(t)

• Watching the evolution of distribution density function of ρ(t)

, Fokker-Planck equation

∂ρ

∂t
= ∇ (ρ(t)∇f) + σ2

2 ∆ρ(t)
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Sources

• Francis Bach blog

• Off convex Path blog
• Stochastic gradient algorithms from ODE splitting perspective
• NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
• Introduction to Gradient Flows in the 2-Wasserstein Space
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