
We will treat all vectors as column vectors by default. The space of real vectors of length  is denoted by , while the space of real-valued 
 matrices is denoted by . That’s it: 

Similarly, if  we denote transposition as :

We will write  and  to indicate componentwise relationships

A matrix is symmetric if . It is denoted as  (set of square symmetric matrices of dimension ). Note, that only a square matrix
could be symmetric by definition.

A matrix  is called positive (negative) definite if for all . We denote this as . The set of such
matrices is denoted as 

A matrix  is called positive (negative) semidefinite if for all . We denote this as . The set of such
matrices is denoted as 

Is it correct, that a positive definite matrix has all positive entries?

1 Basic linear algebra background

1.1 Vectors and matrices
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Figure 1: Equivivalent representations of a vector
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Question

1.2 Matrix and vector product
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Let  be a matrix of size , and  be a matrix of size , and let the product  be:

then  is a  matrix, with element  given by:

This operation in a naive form requires  arithmetical operations, where  is usually assumed as the largest dimension of matrices.

Is it possible to multiply two matrices faster, than ? How about , ?

Let  be a matrix of shape , and  be  vector, then the -th component of the product:

is given by:

Remember, that:

 (but if  and  are commuting matrices, which means that , )

Norm is a qualitative measure of the smallness of a vector and is typically denoted as .

The norm should satisfy certain properties:

1. , 
2.  (triangle inequality)
3. If  then 

The distance between two vectors is then defined as

The most well-known and widely used norm is Euclidean norm:

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.

Euclidean norm, or -norm, is a subclass of an important class of -norms:

There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the maximal absolute value:
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1.3 Norms and scalar products
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 norm (or Manhattan distance) which is defined as the sum of modules of the elements of :

 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s as one of the most popular
research topics. The code for the picture below is available here: 

"

In some sense there is no big di!erence between matrices and vectors (you can vectorize the matrix), and here comes the simplest matrix norm
Frobenius norm:

Spectral norm,  is one of the most used matrix norms (along with the Frobenius norm).

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are e!icient algorithms to
compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It holds

where  is the largest singular value of the matrix .

Is it true, that all matrix norms satisfy the submultiplicativity property: ? Hint: consider Chebyshev matrix norm .

The standard scalar (inner) product between vectors  and  from  is given by

Here  and  are the scalar -th components of corresponding vectors.

Is there any connection between the norm  and scalar product ?

Prove, that you can switch the position of a matrix inside a scalar product with transposition:  and 

The standard scalar (inner) product between matrices  and  from  is given by
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Figure 2: Balls in di!erent norms on a plane
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⟨x, Ay⟩ = ⟨A x, y⟩T ⟨x, yB⟩ = ⟨xB , y⟩T
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Is there any connection between the Frobenious norm  and scalar product between matrices ?

Simplify the following expression:

where 

1. Let  be the matrix of columns vector , therefore matrix  contains rows 
2. Note, that,  - it is the skeleton decomposition from vectors . Also note, that  is not symmetric, while , clearly, is.

3. The target sum is .

4. The most important part of this exercise lies here: we’ll present this sum as the trace of some matrix  to use trace cyclic property.

where  - i-th diagonal element of some matrix .
5. Note, that  is the product of 2 matrices, because -th diagonal element of  is the scalar product of -th row of the first matrix

 and -th column of the second matrix . -th row of matrix , by definition, is , while -th column of the matrix  is clearly
.

Indeed, , then we can finish the exercise:

A scalar value  is an eigenvalue of the  matrix  if there is a nonzero vector  such that

Consider a 2x2 matrix:

The eigenvalues of this matrix can be found by solving the characteristic equation:

For this matrix, the eigenvalues are  and . These eigenvalues tell us about the scaling factors of the matrix along its principal axes.

The vector  is called an eigenvector of . The matrix  is nonsingular if none of its eigenvalues are zero. The eigenvalues of symmetric matrices
are all real numbers, while nonsymmetric matrices may have imaginary eigenvalues. If the matrix is positive definite as well as symmetric, its
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1.4 Eigenvalues, eigenvectors, and the singular-value decomposition

1.4.1 Eigenvalues
λ n × n A q

Aq = λq.

Example
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1

1
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det(A − λI) = 0

λ =1 1 λ =2 4

q A A



eigenvalues are all positive real numbers.

We will just prove the first point here. The second one can be proved analogously.
1.  Suppose some eigenvalue  is negative and let  denote its corresponding eigenvector. Then

which contradicts the condition of .
2.  For any symmetric matrix, we can pick a set of eigenvectors  that form an orthogonal basis of . Pick any .

here we have used the fact that , for .

If a matrix has all positive eigenvalues, what can we infer about the matrix’s definiteness?

Suppose , i.e.,  is a real symmetric  matrix. Then  can be factorized as

where  is orthogonal, i.e., satisfies , and . The (real) numbers  are the eigenvalues of  and are
the roots of the characteristic polynomial . The columns of  form an orthonormal set of eigenvectors of . The factorization is
called the spectral decomposition or (symmetric) eigenvalue decomposition of . 

We usually order the eigenvalues as . We use the notation  to refer to the -th largest eigenvalue of . We
usually write the largest or maximum eigenvalue as , and the least or minimum eigenvalue as .

The largest and smallest eigenvalues satisfy

and consequently  (Rayleigh quotient):

The condition number of a nonsingular matrix is defined as

Suppose  with rank . Then  can be factored as

where  satisfies ,  satisfies , and  is a diagonal matrix with , such that

This factorization is called the singular value decomposition (SVD) of . The columns of  are called le" singular vectors of , the columns of
 are right singular vectors, and the numbers  are the singular values. The singular value decomposition can be written as
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where  are the le" singular vectors, and  are the right singular vectors.

Consider a 2x2 matrix:

The singular value decomposition of this matrix can be represented as:

Where  and  are orthogonal matrices and  is a diagonal matrix with the singular values on its diagonal. For this matrix, the singular values are 4 and 2,
which are also the eigenvalues of the matrix.

Let , and let . Show that

where  are the singular values of matrix . Hint: use the connection between Frobenius norm and scalar product and SVD.

Suppose, matrix . What can we say about the connection between its eigenvalues and singular values?

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

The latter expression refers to the fun fact: you can randomly choose  linearly independent columns of a matrix and any  linearly independent
rows of a matrix and store only them with the ability to reconstruct the whole matrix exactly.
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How does the choice of columns and rows in the Skeleton decomposition a!ect the accuracy of the matrix reconstruction?

Use cases for Skeleton decomposition are:

Model reduction, data compression, and speedup of computations in numerical analysis: given rank-  matrix with  one needs to
store  elements.
Feature extraction in machine learning, where it is also known as matrix factorization
All applications where SVD applies, since Skeleton decomposition can be transformed into truncated SVD form.

One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which implies representing the
tensor as a sum of  primitive tensors.

Figure 3: Illustration of Skeleton decomposition

Question

r r ≪ n, m

O((n + m)r) ≪ nm

1.5 Canonical tensor decomposition

r



Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring (TR), and others. In the tensor case, we do not have a
straightforward definition of rank for all types of decompositions. For example, for TT decomposition rank is not a scalar, but a vector.

How does the choice of rank in the Canonical tensor decomposition a!ect the accuracy and interpretability of the decomposed tensor?

The determinant and trace can be expressed in terms of the eigenvalues

The determinant has several appealing (and revealing) properties. For instance,

 if and only if  is singular;
;

.

Don’t forget about the cyclic property of a trace for arbitrary matrices  (assuming, that all dimensions are consistent):

For the matrix:

The determinant is , and the trace is . The determinant gives us a measure of the volume scaling factor of the
matrix, while the trace provides the sum of the eigenvalues.

Tensor 𝑻𝐼× 𝐽×𝐾
𝑎1

𝑏1𝑐1

𝑎𝑟
𝑏𝑟𝑐𝑟

𝐴𝐼× 𝑟 𝐵𝐽× 𝑟 𝐶𝐾× 𝑟
Figure 4: Illustration of Canonical Polyadic decomposition
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1.6 Determinant and trace
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det(C) = 6 − 1 = 5 tr(C) = 2 + 3 = 5



How does the determinant of a matrix relate to its invertibility?

What can you say about the determinant value of a positive definite matrix?

Let , then vector, which contains all first-order partial derivatives:

named gradient of . This vector indicates the direction of the steepest ascent. Thus, vector  means the direction of the steepest
descent of the function in the point. Moreover, the gradient vector is always orthogonal to the contour line in the point.

For the function , the gradient is:

This gradient points in the direction of the steepest ascent of the function.

How does the magnitude of the gradient relate to the steepness of the function?

Let , then matrix, containing all the second order partial derivatives:

In fact, Hessian could be a tensor in such a way:  is just 3d tensor, every slice is just hessian of corresponding scalar function
.

For the function , the Hessian is:

This matrix provides information about the curvature of the function in di!erent directions.

How can the Hessian matrix be used to determine the concavity or convexity of a function?

Question

Question

2 Optimization bingo

2.1 Gradient
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2.2 Hessian
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Example
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The extension of the gradient of multidimensional  is the following matrix:

For the function

the Jacobian is:

This matrix provides information about the rate of change of the function with respect to its inputs.

How does the Jacobian matrix relate to the gradient for scalar-valued functions?

Can we somehow connect those three definitions above (gradient, jacobian, and hessian) using a single correct statement?

X Y G Name

 (derivative)

 (gradient)

 (jacobian)

Taylor approximations provide a way to approximate functions locally by polynomials. The idea is that for a smooth function, we can approximate
it by its tangent (for the first order) or by its parabola (for the second order) at a point.

The first-order Taylor approximation, also known as the linear approximation, is centered around some point . If  is a
di!erentiable function, then its first-order Taylor approximation is given by:

2.3 Jacobian

f(x) : R →n Rm

J =f f (x) =′ =
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2.4 Summary

f(x) : X → Y ; ∈
∂x
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∂xi

∂f

Rn Rm Rm×n

∂xj

∂fi

Rm×n R Rn×m

∂xij

∂f

2.5 Taylor approximations

2.5.1 First-order Taylor approximation
x0 f : R →n R



Where:

 is the value of the function at the point .
 is the gradient of the function at the point .

It is very usual to replace the  with  near the point  for simple analysis of some approaches.

For the function  around the point , the first order Taylor approximation is:

The second-order Taylor approximation is:

These approximations provide polynomial representations of the function near the point .

The second-order Taylor approximation, also known as the quadratic approximation, includes the curvature of the function. For a twice-
di!erentiable function , its second-order Taylor approximation centered at some point  is:

Where:

 is the Hessian matrix of  at the point .

f (x) =x0

I f(x ) +0 ∇f(x ) (x −0
T x )0

f(x )0 x0

∇f(x )0 x0

f(x) f (x)x0

I x0

Figure 5: First order Taylor approximation near the point x0

Example

f(x) = ex x =0 0

f (x) =x0

I 1 + x

f (x) =x0

II 1 + x +
2

x2

x0

2.5.2 Second-order Taylor approximation

f : R →n R x0

f (x) =x0

II f(x ) +0 ∇f(x ) (x −0
T x ) +0 (x −

2

1
x ) ∇ f(x )(x −0

T 2
0 x )0

∇ f(x )2
0 f x0



When using the linear approximation of the function is not su!icient one can consider replacing the  with  near the point . In
general, Taylor approximations give us a way to locally approximate functions. The first-order approximation is a plane tangent to the function at
the point , while the second-order approximation includes the curvature and is represented by a parabola. These approximations are especially
useful in optimization and numerical methods because they provide a tractable way to work with complex functions.

Calculate first and second order Taylor approximation of the function 

Why might one choose to use a Taylor approximation instead of the original function in certain applications?

Note, that even the second-order approximation could become inaccurate very quickly. The code for the picture below is available here: 

"

Figure 6: Second order Taylor approximation near the point x0



f(x) f (x)x0

II x0

x0

Example

f(x) = x Ax −
2

1 T b x +T c

Solution

Question

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/taylor_inaccuracy.ipynb


The basic idea of the naive approach is to reduce matrix/vector derivatives to the well-known scalar derivatives.

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical tricks here is to separate indices of sum ( ) and partial derivatives ( ). Ignoring this simple rule tends to
produce mistakes.

The guru approach implies formulating a set of simple rules, which allows you to calculate derivatives just like in a scalar case. It might be
convenient to use the di!erential notation here. 

Let  be an interior point of the set , and let  be a linear operator. We say that the function  is di!erentiable at the point  with
derivative  if for all su!iciently small  the following decomposition holds:

If for any linear operator  the function  is not di!erentiable at the point  with derivative , then we say that  is not di!erentiable at the point
.

A"er obtaining the di!erential notation of  we can retrieve the gradient using the following formula:

3 Derivatives

3.1 Naive approach

i k

3.2 Di!erential approach

3

Theorem

x ∈ S S D : U → V f x

D h ∈ U

f(x + h) = f(x) + D[h] + o(∥h∥)

D : U → V f x D f

x

3.2.1 Di!erentials
df



Then, if we have a di!erential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat “old”  as
the constant , then calculate 

Let  and  be the constant matrices, while  and  are the variables (or matrix functions).

Find , if .

Find , if .

1. It is essential for  to be positive definite, because it is a logarithm argument. So, Let’s find the di!erential first:

2. Note, that our main goal is to derive the form 

Hence, the gradient is 

df(x) = ⟨∇f(x), dx⟩

dx

dx1 d(df) = d f(x)2

d f(x) =2 ⟨∇ f(x)dx , dx⟩ =2
1 ⟨H (x)dx , dx⟩f 1

3.2.2 Properties
A B X Y

dA = 0
d(αX) = α(dX)
d(AXB) = A(dX)B

d(X + Y ) = dX + dY

d(X ) =T (dX)T

d(XY ) = (dX)Y + X(dY )
d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩

d =(
ϕ

X )
ϕ2

ϕdX − (dϕ)X

d det X =( ) det X⟨X , dX⟩−T

d tr X =( ) ⟨I, dX⟩

df(g(x)) = ⋅
dg

df
dg(x)

H = (J(∇f))T

d(X ) =−1 −X (dX)X−1 −1

Example

∇ f(x)2 f(x) = ⟨Ax, x⟩ −
2

1
⟨b, x⟩ + c

Solution

Example

df , ∇f(x) f(x) = ln⟨x, Ax⟩

Solution

A A ∈ S++
n

df = d ln⟨x, Ax⟩ = = =( )
⟨x, Ax⟩

d ⟨x, Ax⟩( )

⟨x, Ax⟩
⟨dx, Ax⟩ + ⟨x, d(Ax)⟩

= = =
⟨x, Ax⟩

⟨Ax, dx⟩ + ⟨x, Adx⟩
⟨x, Ax⟩

⟨Ax, dx⟩ + ⟨A x, dx⟩T

⟨x, Ax⟩
⟨(A + A )x, dx⟩T

df = ⟨⋅, dx⟩

df = , dx⟨
⟨x, Ax⟩

2Ax ⟩

∇f(x) =
⟨x, Ax⟩

2Ax



Find , if .

Find , if .

Find the gradient  and hessian , if 

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A. Mathematical background.
Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.
Matrix decompositions Cheat Sheet.
Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
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Example

df , ∇f(X) f(X) = ∥AX − B∥F

Solution

Example

df , ∇f(X) f(X) = ⟨S, X⟩ − log det X

Solution

Example

∇f(x) ∇ f(x)2 f(x) = ln 1 + exp⟨a, x⟩( )

Solution

4 References

Footnotes

1. A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - book by Stephen
Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of the book Numerical Optimization by
Jorge Nocedal Stephen J. Wright.↩︎

2. A good cheat sheet with matrix decomposition is available at the NLA course website.↩︎
3. The most comprehensive and intuitive guide about the theory of taking matrix derivatives is presented in these notes by Dmitry Kropotov team.↩︎
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