
Theory / Convex sets / Affine set

Suppose  are two points in . Then the line passing through them is defined as

follows:

The set  is called affine if for any  from  the line passing through them also

lies in , i.e.

!

 EXAMPLE

 is an affine set. The set of solutions  is also an affine set.

Let we have , then the point  is called

affine combination of  if .

Line
x , x1 2 Rn

x = θx +1 (1 − θ)x , θ ∈2 R

Affine set
A x , x1 2 A

A

∀θ ∈ R, ∀x , x ∈1 2 A : θx +1 (1 − θ)x ∈2 A

Rn x ∣ Ax = b{ }

Related definitions

Affine combination
x , x , … , x ∈1 2 k S θ x +1 1 θ x +2 2 … + θ xk k

x , x , … , x1 2 k θ =
i=1
∑
k

i 1
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The set of all affine combinations of points in set  is called the affine hull of :

The set  is the smallest affine set containing .

Certainly, let’s translate the last two subchapters and then provide an example for the

affine set definition as you requested:

The interior of the set  is defined as the following set:

where  is the ball centered at point  with radius .

The relative interior of the set  is defined as the following set:

i=1

Affine hull
S S

aff(S) = θ x ∣ x ∈ S, θ = 1{
i=1

∑
k

i i i

i=1

∑
k

i }
• aff(S) S

Interior
S

int(S) = {x ∈ S ∣ ∃ε > 0, B(x, ε) ⊂ S}

B(x, ε) = x + εB x ε

Relative Interior
S

relint(S) = {x ∈ S ∣ ∃ε > 0, B(x, ε) ∩ aff(S) ⊆ S}



X

x1

x2

x1

x2

relint(X)

!

 EXAMPLE

Any non-empty convex set  has a non-empty relative interior .

"

 QUESTION

Give any example of a set , which has an empty interior, but at the same

time has a non-empty relative interior .

S ⊆ Rn relint(S)

S ⊆ Rn

relint(S)



Theory / Convex sets / Conic set

A non-empty set  is called cone, if:

The set  is called convex cone, if:

0

!

 EXAMPLE

 

Affine sets, containing  

Ray 

 - the set of symmetric positive semi-definite matrices

Cone
S

∀x ∈ S, θ ≥ 0 → θx ∈ S

Convex cone
S

∀x , x ∈1 2 S, θ , θ ≥1 2 0 → θ x +1 1 θ x ∈2 2 S

• Rn

• 0

•

• S+
n

Related definitions
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Let we have , then the point  is called

conic combination of  if .

The set of all conic combinations of points in set  is called the conic hull of :

0

Conic combination
x , x , … , x ∈1 2 k S θ x +1 1 θ x +2 2 … + θ xk k

x , x , … , x1 2 k θ ≥i 0

Conic hull
S S

cone(S) = θ x ∣ x ∈ S, θ ≥ 0{
i=1

∑
k

i i i i }



Theory / Convex sets / Convex set

Suppose  are two points in . Then the line segment between them is defined

as follows:

The set  is called convex if for any  from  the line segment between them also

lies in , i.e.

!

 EXAMPLE

Empty set and a set from a single vector are convex by definition.

!

 EXAMPLE

Any affine set, a ray, a line segment - they all are convex sets.

Line segment
x , x1 2 Rn

x = θx +1 (1 − θ)x , θ ∈2 [0, 1]

Convex set
S x , x1 2 S

S

∀θ ∈ [0, 1], ∀x , x ∈1 2 S :
θx +1 (1 − θ)x ∈2 S
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BRO BRO

BRO

NOT BRO

NOT BRO BRO

Let , then the point  is called the convex

combination of points  if .

Related definitions

Convex combination
x , x , … , x ∈1 2 k S θ x +1 1 θ x +2 2 … + θ xk k

x , x , … , x1 2 k θ =
i=1
∑
k

i 1, θ ≥i 0

Convex hull



The set of all convex combinations of points from  is called the convex hull of the set 

.

The set  is the smallest convex set containing .

The set  is convex if and only if .

Examples:

BRO BRO

BRO

BRO

BRO BRO

The Minkowski sum of two sets of vectors  and  in Euclidean space is formed by

adding each vector in  to each vector in :

Similarly, one can define linear combination of the sets.

!

 EXAMPLE

We will work in the  space. Let’s define:

This is a unit circle centered at the origin. And:

S

S

conv(S) = θ x ∣ x ∈ S, θ = 1, θ ≥ 0{
i=1

∑
k

i i i

i=1

∑
k

i i }
• conv(S) S

• S S = conv(S)

Minkowski addition
S1 S2

S1 S2

S +1 S =2 {s +1 s ∣ s ∈2 1 S ,  s ∈1 2 S }2

R2

S :=1 {x ∈ R :2 x +1
2 x ≤2

2 1}



This represents a rectangle. The sum of the sets  and  will form an enlarged

rectangle  with rounded corners. The >resulting set will be convex.

In practice it is very important to understand whether a specific set is convex or not.

Two approaches are used for this depending on the context.

By definition.

Show that  is derived from simple convex sets using operations that preserve

convexity.

!

 EXAMPLE

Prove, that ball in  (i.e. the following set ) - is convex.

Solution

"

 QUESTION

Which of the sets are convex: 

Stripe,  

Rectangle,  

Kleen,  

A set of points closer to a given point than a given set that does not contain a

point,  

A set of points, which are closer to one set than another, 

 

A set of points, , where  is convex and 

 is arbitrary. 

A set of points whose distance to a given point does not exceed a certain part

of the distance to another given point is 

S :=2 {x ∈ R :2 −1 ≤ x ≤1 2, −3 ≤ x ≤2 4}

S1 S2

S2

Finding convexity

•

• S

By definition

x , x ∈1 2 S, 0 ≤ θ ≤ 1 → θx +1 (1 − θ)x ∈2 S

Rn x ∣ ∥x − x ∥ ≤ rc

• x ∈ R ∣ α ≤ a x ≤ βn ⊤

• x ∈ R ∣ α ≤ x ≤ β , i =n
i i i 1, n

• x ∈ R ∣ a x ≤ b , a x ≤ bn
1
⊤

1 2
⊤

2

•

x ∈ R ∣ ∥x− > x ∥ ≤ ∥x − y∥ , ∀y ∈ S ⊆ Rn
0 2 2

n

•

x ∈ R ∣ dist(x, S) ≤ dist(x, T ), S, > T ⊆ Rn n

• x ∈ R ∣ x + X ⊆ Sn S ⊆ Rn X ⊆>
Rn

•

x ∈ R ∣ ∥x − a∥ ≤ θ∥xb∥ , a, b ∈ R , 0 ≤ 1n n



Let there be 2 convex sets , let the set

Take two points from :  and prove that the

segment between them  also belongs to 

If the desired intersection is empty or contains one point, the property is proved by

definition. Otherwise, take 2 points and a segment between them. These points must lie

in all intersecting sets, and since they are all convex, the segment between them lies in

all sets and, therefore, in their intersection.

Examples of affine functions: extension, projection, transposition, set of solutions of

linear matrix inequality . Here  are

symmetric matrices .

Note also that the prototype of the convex set under affine mapping is also convex.

!

 EXAMPLE

Let  is a random variable with a given probability distribution of 

, where , and . It is said that the probability

x ∈ R ∣ ∥x − a∥ ≤ θ∥xb∥ , a, b ∈ R , 0 ≤ 1n
2 2

n

Preserving convexity

The linear combination of convex sets is convex
S , Sx y

S = s ∣ s = c x + c y, x ∈ S , y ∈ S , c , c ∈ R{ 1 2 x y 1 2 }

S s =1 c x +1 1 c y , s =2 1 2 c x +1 2 c y2 2

θs +1 (1 − θ)s , θ ∈2 [0, 1] S

θs +1 (1 − θ)s2

θ(c x +1 1 c y ) +2 1 (1 − θ)(c x +1 2 c y )2 2

c (θx +1 1 (1 − θ)x ) +2 c (θy +2 1 (1 − θ)y )2

c x +1 c y ∈2 S

The intersection of any (!) number of convex sets is convex

The image of the convex set under affine mapping is convex

S ⊆ R  convex →n f(S) = f(x) ∣ x ∈ S  convex f(x) = Ax + b{ } ( )

x ∣ x A + … + x A ⪯ B{ 1 1 m m } A , B ∈i Sp

p × p

S ⊆ R  convex →m f (S) =−1 x ∈ R ∣ f(x) ∈ S  convex f(x) = Ax + b{ n } ( )

x ∈ R P(x =
a ) =i pi i = 1, > … , n a <1 … < an

Rn



vector of outcomes of  belongs to the >probabilistic simplex, i.e.

Determine if the following sets of  are convex: 

 

 

Solution

p ∈ Rn

P = {p ∣ 1 p =T 1, p ⪰ 0} = {p ∣ p +1 … + p =n 1, p ≥i 0}.

p

• P(x > α) ≤ β

• E∣x ∣ ≤201 αE∣x∣

• E∣x ∣ ≥2 αVx ≥ α



Theory / Convex function

The function , which is defined on the convex set , is called convex on 

, if:

for any  and .

If above inequality holds as strict inequality  and , then function is

called strictly convex on .

Convex
Non Convex

!

 EXAMPLE

 

 

 

 

 

The sum of the largest  coordinates  

 

Convex function
f(x) S ⊆ Rn

S

f(λx +1 (1 − λ)x ) ≤2 λf(x ) +1 (1 − λ)f(x )2

x , x ∈1 2 S 0 ≤ λ ≤ 1
x =1  x2 0 < λ < 1

S

• f(x) = x , p >p 1, x ∈ R+

• f(x) = ∥x∥ , p >p 1, x ∈ Rn

• f(x) = e , c ∈cx R, x ∈ R
• f(x) = − ln x, x ∈ R++

• f(x) = x ln x, x ∈ R++

• k f(x) = x +(1) … + x , x ∈(k) Rn

• f(X) = λ (X), X =max XT

• f(X) = − log det X, X ∈ S++
n
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For the function , defined on , the following set:

is called epigraph of the function .

For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function .

Epigraph
f(x) S ⊆ Rn

epi f = [x, μ] ∈ S × R : f(x) ≤ μ{ }

f(x)

Sublevel set
f(x) S ⊆ Rn

L =β x ∈ S : f(x) ≤ β{ }

f(x)



Sublevel set

The differentiable function  defined on the convex set  is convex if and

only if :

Let , then the criterion will become more tractable:

Criteria of convexity

First order differential criterion of convexity
f(x) S ⊆ Rn

∀x, y ∈ S

f(y) ≥ f(x) + ∇f (x)(y −T x)

y = x + Δx

f(x + Δx) ≥ f(x) + ∇f (x)ΔxT



Function
Global linear lower bound

Twice differentiable function  defined on the convex set  is convex if and

only if :

In other words, :

The function is convex if and only if its epigraph is a convex set.

!

 EXAMPLE

Let a norm  be defined in the space . Consider the set:

which represents the epigraph of the function . This set is called the cone

norm. According to statement above, the set  is convex.

In the case where  and  (Euclidean norm), the abstract set 

transitions into the set:

Second order differential criterion of convexity
f(x) S ⊆ Rn

∀x ∈ int(S) = ∅

∇ f(x) ⪰2 0

∀y ∈ Rn

⟨y, ∇ f(x)y⟩ ≥2 0

Connection with epigraph

∥ ⋅ ∥ U

K := {(x, t) ∈ U × R :+ ∥x∥ ≤ t}

x ↦ ∥x∥
K

U = Rn ∥x∥ = ∥x∥2 K



If  - is a convex function defined on the convex set , then for any 

sublevel set  is convex.

The function  defined on the convex set  is closed if and only if for any 

sublevel set  is closed.

 is convex if and only if  is a convex set and the function 

 defined on  is convex for any , which allows to

check convexity of the scalar function in order to establish convexity of the vector

function.

, defined on the convex set , is called -strongly convex (strongly

convex) on , if:

for any  and  for some .

{(x, t) ∈ R ×n R :+ ∥x∥ ≤2 t}

Connection with sublevel set
f(x) S ⊆ Rn β

Lβ

f(x) S ⊆ Rn β

Lβ

Reduction to a line
f : S → R S g(t) = f(x +
tv) t ∣ x + tv ∈ S{ } x ∈ S, v ∈ Rn

Strong convexity
f(x) S ⊆ Rn μ

S

f(λx +1 (1 − λ)x ) ≤2 λf(x ) +1 (1 − λ)f(x ) −2 μλ(1 − λ)∥x −1 x ∥2
2

x , x ∈1 2 S 0 ≤ λ ≤ 1 μ > 0



Function
Global quadratic lower bound

Differentiable  defined on the convex set  is -strongly convex if and only

if :

Let , then the criterion will become more tractable:

Twice differentiable function  defined on the convex set  is called -

strongly convex if and only if :

In other words:

Criteria of strong convexity

First order differential criterion of strong convexity
f(x) S ⊆ Rn μ

∀x, y ∈ S

f(y) ≥ f(x) + ∇f (x)(y −T x) + ∥y −
2

μ
x∥2

y = x + Δx

f(x + Δx) ≥ f(x) + ∇f (x)Δx +T ∥Δx∥
2

μ 2

Second order differential criterion of strong convexity
f(x) S ⊆ Rn μ

∀x ∈ int(S) = ∅

∇ f(x) ⪰2 μI

⟨y, ∇ f(x)y⟩ ≥2 μ∥y∥2



 is called (strictly) concave, if the function  - is (strictly) convex.

Jensen’s inequality for the convex functions:

for  (probability simplex)

For the infinite dimension case:

If the integrals exist and 

If the function  and the set  are convex, then any local minimum 

 will be the global one. Strong convexity guarantees the uniqueness of

the solution.

Non-negative sum of the convex functions: .

Composition with affine function  is convex, if  is convex.

Pointwise maximum (supremum): If  are convex, then 

 is convex.

If  is convex on  for any :  is convex.

If  is convex on , then  - is convex with .

Let  and , where . If  and  are

convex, and  is increasing, then  is convex on .

Log-convex:  is convex; Log convexity implies convexity.

Facts
• f(x) −f(x)

•

f α x ≤(
i=1

∑
n

i i) α f(x )
i=1

∑
n

i i

α ≥i 0; α =
i=1
∑
n

i 1

f xp(x)dx ≤

S

∫ f(x)p(x)dx

S

∫

p(x) ≥ 0, p(x)dx =
S

∫ 1

• f(x) S x =∗

arg f(x)
x∈S
min

Operations that preserve convexity
• αf(x) + βg(x), (α ≥ 0, β ≥ 0)

• f(Ax + b) f(x)

• f (x), … , f (x)1 m f(x) =
max{f (x), … , f (x)}1 m

• f(x, y) x y ∈ Y g(x) = f(x, y)
y∈Y

sup

• f(x) S g(x, t) = tf(x/t) x/t ∈ S, t > 0

• f :1 S →1 R f :2 S →2 R range(f ) ⊆1 S2 f1 f2

f2 f ∘2 f1 S1

Other forms of convexity
• log f



Log-concavity:  concave; not closed under addition!

Exponentially convex: , for 

Operator convex: 

Quasiconvex: 

Pseudoconvex: 

Discrete convexity: ; “convexity + matroid theory.”

!

 EXAMPLE

Show, that  is convex and concave.

Solution

!

 EXAMPLE

Show, that , where  - is convex on .

Solution

!

 EXAMPLE

Show, that  - is convex, if .

Solution

• log f

• [f(x +i x )] ⪰j 0 x , … , x1 n

• f(λX + (1 − λ)Y ) ⪯ λf(X) + (1 − λ)f(Y )

• f(λx + (1 − λ)y) ≤ max{f(x), f(y)}

• ⟨∇f(y), x − y⟩ ≥ 0 ⟶ f(x) ≥ f(y)

• f : Z →n Z

f(x) = c x +⊤ b

f(x) = x Ax⊤ A ⪰ 0 Rn

f(A) = λ (A)max A ∈ Sn



!

 EXAMPLE

PL inequality holds if the following condition is satisfied for some ,

The example of function, that satisfy PL-condition, but is not convex. 

Steven Boyd lectures

Suvrit Sra lectures

Martin Jaggi lectures

μ > 0

∥∇f(x)∥ ≥2 μ(f(x) − f )∀x∗

f(x, y) =

2

(y − sin x)2
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