
Theory / Convex function

The function , which is defined on the convex set , is called convex on , if:

for any  and .

If above inequality holds as strict inequality  and , then function is called

strictly convex on .

Convex
Non Convex

!

 EXAMPLE

 

 

 

 

 

The sum of the largest  coordinates  

Convex function
f(x) S ⊆ Rn S

f(λx +1 (1 − λ)x ) ≤2 λf(x ) +1 (1 − λ)f(x )2

x , x ∈1 2 S 0 ≤ λ ≤ 1
x =1  x2 0 < λ < 1

S

• f(x) = x , p >p 1, x ∈ R+

• f(x) = ∥x∥ , p >p 1, x ∈ Rn

• f(x) = e , c ∈cx R, x ∈ R
• f(x) = − ln x, x ∈ R++

• f(x) = x ln x, x ∈ R++

• k f(x) = x +(1) … + x , x ∈(k) Rn

T

http://127.0.0.1:4000/
http://127.0.0.1:4000/docs/theory/Theory/


 

For the function , defined on , the following set:

is called epigraph of the function .

For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function .

• f(X) = λ (X), X =max XT

• f(X) = − log det X, X ∈ S++
n

Epigraph
f(x) S ⊆ Rn

epi f = [x, μ] ∈ S × R : f(x) ≤ μ{ }

f(x)

Sublevel set
f(x) S ⊆ Rn

L =β x ∈ S : f(x) ≤ β{ }

f(x)



Sublevel set

The differentiable function  defined on the convex set  is convex if and only if 

:

Let , then the criterion will become more tractable:

Criteria of convexity

First order differential criterion of convexity
f(x) S ⊆ Rn

∀x, y ∈ S

f(y) ≥ f(x) + ∇f (x)(y −T x)

y = x + Δx

f(x + Δx) ≥ f(x) + ∇f (x)ΔxT



Function
Global linear lower bound

Twice differentiable function  defined on the convex set  is convex if and only

if :

In other words, :

The function is convex if and only if its epigraph is a convex set.

!

 EXAMPLE

Let a norm  be defined in the space . Consider the set:

which represents the epigraph of the function . This set is called the cone

norm. According to statement above, the set  is convex.

In the case where  and  (Euclidean norm), the abstract set 

transitions into the set:

Second order differential criterion of convexity
f(x) S ⊆ Rn

∀x ∈ int(S) = ∅

∇ f(x) ⪰2 0

∀y ∈ Rn

⟨y, ∇ f(x)y⟩ ≥2 0

Connection with epigraph

∥ ⋅ ∥ U

K := {(x, t) ∈ U × R :+ ∥x∥ ≤ t}

x ↦ ∥x∥
K

U = Rn ∥x∥ = ∥x∥2 K



If  - is a convex function defined on the convex set , then for any  sublevel

set  is convex.

The function  defined on the convex set  is closed if and only if for any 

sublevel set  is closed.

 is convex if and only if  is a convex set and the function 

defined on  is convex for any , which allows to check

convexity of the scalar function in order to establish convexity of the vector function.

, defined on the convex set , is called -strongly convex (strongly convex)

on , if:

for any  and  for some .

{(x, t) ∈ R ×n R :+ ∥x∥ ≤2 t}

Connection with sublevel set
f(x) S ⊆ Rn β

Lβ

f(x) S ⊆ Rn β

Lβ

Reduction to a line
f : S → R S g(t) = f(x + tv)

t ∣ x + tv ∈ S{ } x ∈ S, v ∈ Rn

Strong convexity
f(x) S ⊆ Rn μ

S

f(λx +1 (1 − λ)x ) ≤2 λf(x ) +1 (1 − λ)f(x ) −2 μλ(1 − λ)∥x −1 x ∥2
2

x , x ∈1 2 S 0 ≤ λ ≤ 1 μ > 0



Function
Global quadratic lower bound

Differentiable  defined on the convex set  is -strongly convex if and only if 

:

Let , then the criterion will become more tractable:

Twice differentiable function  defined on the convex set  is called -strongly

convex if and only if :

In other words:

Criteria of strong convexity

First order differential criterion of strong convexity
f(x) S ⊆ Rn μ

∀x, y ∈ S

f(y) ≥ f(x) + ∇f (x)(y −T x) + ∥y −
2

μ
x∥2

y = x + Δx

f(x + Δx) ≥ f(x) + ∇f (x)Δx +T ∥Δx∥
2

μ 2

Second order differential criterion of strong convexity
f(x) S ⊆ Rn μ

∀x ∈ int(S) = ∅

∇ f(x) ⪰2 μI

⟨y, ∇ f(x)y⟩ ≥2 μ∥y∥2



 is called (strictly) concave, if the function  - is (strictly) convex.

Jensen’s inequality for the convex functions:

for  (probability simplex)

For the infinite dimension case:

If the integrals exist and 

If the function  and the set  are convex, then any local minimum 

 will be the global one. Strong convexity guarantees the uniqueness of the

solution.

Let  - be a convex function on a convex set . Then  is continuous 

.

Non-negative sum of the convex functions: .

Composition with affine function  is convex, if  is convex.

Pointwise maximum (supremum): If  are convex, then 

 is convex.

If  is convex on  for any :  is convex.

If  is convex on , then  - is convex with .

Let  and , where . If  and  are convex,

and  is increasing, then  is convex on .

Facts
• f(x) −f(x)

•

f α x ≤(
i=1

∑
n

i i) α f(x )
i=1

∑
n

i i

α ≥i 0; α =
i=1
∑
n

i 1

f xp(x)dx ≤

S

∫ f(x)p(x)dx

S

∫

p(x) ≥ 0, p(x)dx =
S

∫ 1

• f(x) S x =∗

arg f(x)
x∈S
min

• f(x) S ⊆ Rn f(x)
∀x ∈ ri(S)

Operations that preserve convexity
• αf(x) + βg(x), (α ≥ 0, β ≥ 0)

• f(Ax + b) f(x)

• f (x), … , f (x)1 m f(x) =
max{f (x), … , f (x)}1 m

• f(x, y) x y ∈ Y g(x) = f(x, y)
y∈Y

sup

• f(x) S g(x, t) = tf(x/t) x/t ∈ S, t > 0

• f :1 S →1 R f :2 S →2 R range(f ) ⊆1 S2 f1 f2

f2 f ∘2 f1 S1



Log-convex:  is convex; Log convexity implies convexity.

Log-concavity:  concave; not closed under addition!

Exponentially convex: , for 

Operator convex: 

Quasiconvex: 

Pseudoconvex: 

Discrete convexity: ; “convexity + matroid theory.”

!

 EXAMPLE

Show, that  is convex and concave.

Solution

!

 EXAMPLE

Show, that , where  - is convex on .

Solution

!

 EXAMPLE

Show, that  - is convex, if .

Other forms of convexity
• log f

• log f

• [f(x +i x )] ⪰j 0 x , … , x1 n

• f(λX + (1 − λ)Y ) ⪯ λf(X) + (1 − λ)f(Y )

• f(λx + (1 − λ)y) ≤ max{f(x), f(y)}

• ⟨∇f(y), x − y⟩ ≥ 0 ⟶ f(x) ≥ f(y)

• f : Z →n Z

f(x) = c x +⊤ b

f(x) = x Ax⊤ A ⪰ 0 Rn

f(A) = λ (A)max A ∈ Sn



Solution

!

 EXAMPLE

PL inequality holds if the following condition is satisfied for some ,

The example of function, that satisfy PL-condition, but is not convex. 

Steven Boyd lectures

Suvrit Sra lectures

Martin Jaggi lectures

Example pf Pl non-convex function Open in Colab

μ > 0

∥∇f(x)∥ ≥2 μ(f(x) − f )∀x∗

f(x, y) =

2

(y − sin x)2
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