$$
f \rightarrow \min _{x, y, z}
$$

Theory / Convex function

Convex function

The function $f(x)$, which is defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called convex on S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$.
If above inequality holds as strict inequality $x_{1} \neq x_{2}$ and $0<\lambda<1$, then function is called strictly convex on S.

풀 EXAMPLE

- $f(x)=x^{p}, \quad p>1, \quad x \in \mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, \quad p>1, x \in \mathbb{R}^{n}$
- $f(x)=e^{c x}, \quad c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x)=-\ln x, \quad x \in \mathbb{R}_{++}$
- $f(x)=x \ln x, \quad x \in \mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, \quad x \in \mathbb{R}^{n}$
- $f(X)=\lambda_{\max }(X), \quad X=X^{T}$
- $f(X)=-\log \operatorname{det} X, \quad X \in S_{++}^{n}$

Epigraph

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\text { epi } f=\{[x, \mu] \in S \times \mathbb{R}: f(x) \leq \mu\}
$$

is called epigraph of the function $f(x)$.

Sublevel set

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\mathcal{L}_{\beta}=\{x \in S: f(x) \leq \beta\}
$$

is called sublevel set or Lebesgue set of the function $f(x)$.

Criteria of convexity

First order differential criterion of convexity

The differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x, y \in S$:

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x
$$

Second order differential criterion of convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset$:

$$
\nabla^{2} f(x) \succeq 0
$$

In other words, $\forall y \in \mathbb{R}^{n}$:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq 0
$$

Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

뎔 EXAMPLE

Let a norm $\|\cdot\|$ be defined in the space U. Consider the set:

$$
K:=\left\{(x, t) \in U \times \mathbb{R}^{+}:\|x\| \leq t\right\}
$$

which represents the epigraph of the function $x \mapsto\|x\|$. This set is called the cone norm. According to statement above, the set K is convex.

In the case where $U=\mathbb{R}^{n}$ and $\|x\|=\|x\|_{2}$ (Euclidean norm), the abstract set K transitions into the set:

Connection with sublevel set

If $f(x)$ - is a convex function defined on the convex set $S \subseteq \mathbb{R}^{n}$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

Reduction to a line

$f: S \rightarrow \mathbb{R}$ is convex if and only if S is a convex set and the function $g(t)=f(x+t v)$ defined on $\{t \mid x+t v \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^{n}$, which allows to check convexity of the scalar function in order to establish convexity of the vector function.

Strong convexity

$f(x)$, defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called μ-strongly convex (strongly convex) on S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)-\mu \lambda(1-\lambda)\left\|x_{1}-x_{2}\right\|^{2}
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$ for some $\mu>0$.

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is μ-strongly convex if and only if $\forall x, y \in S$:

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)+\frac{\mu}{2}\|y-x\|^{2}
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x+\frac{\mu}{2}\|\Delta x\|^{2}
$$

Second order differential criterion of strong convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is called μ-strongly convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset$:

$$
\nabla^{2} f(x) \succeq \mu I
$$

In other words:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq \mu\|y\|^{2}
$$

Facts

- $f(x)$ is called (strictly) concave, if the function $-f(x)$ - is (strictly) convex.
- Jensen's inequality for the convex functions:

$$
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

for $\alpha_{i} \geq 0 ; \quad \sum_{i=1}^{n} \alpha_{i}=1$ (probability simplex)
For the infinite dimension case:

$$
f\left(\int_{S} x p(x) d x\right) \leq \int_{S} f(x) p(x) d x
$$

If the integrals exist and $p(x) \geq 0, \quad \int_{S} p(x) d x=1$

- If the function $f(x)$ and the set S are convex, then any local minimum $x^{*}=$ $\arg \min _{x \in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.
- Let $f(x)$ - be a convex function on a convex set $S \subseteq \mathbb{R}^{n}$. Then $f(x)$ is continuous $\forall x \in \mathbf{r i}(S)$.

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x)+\beta g(x),(\alpha \geq 0, \beta \geq 0)$.
- Composition with affine function $f(A x+b)$ is convex, if $f(x)$ is convex.
- Pointwise maximum (supremum): If $f_{1}(x), \ldots, f_{m}(x)$ are convex, then $f(x)=$ $\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex.
- If $f(x, y)$ is convex on x for any $y \in Y: g(x)=\sup _{y \in Y} f(x, y)$ is convex.
- If $f(x)$ is convex on S, then $g(x, t)=t f(x / t)$ - is convex with $x / t \in S, t>0$.
- Let $f_{1}: S_{1} \rightarrow \mathbb{R}$ and $f_{2}: S_{2} \rightarrow \mathbb{R}$, where range $\left(f_{1}\right) \subseteq S_{2}$. If f_{1} and f_{2} are convex, and f_{2} is increasing, then $f_{2} \circ f_{1}$ is convex on S_{1}.

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; not closed under addition!
- Exponentially convex: $\left[f\left(x_{i}+x_{j}\right)\right] \succeq 0$, for x_{1}, \ldots, x_{n}
- Operator convex: $f(\lambda X+(1-\lambda) Y) \preceq \lambda f(X)+(1-\lambda) f(Y)$
- Quasiconvex: $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}$
- Pseudoconvex: $\langle\nabla f(y), x-y\rangle \geq 0 \longrightarrow f(x) \geq f(y)$
- Discrete convexity: $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$; "convexity + matroid theory."

풀 EXAMPLE

Show, that $f(x)=c^{\top} x+b$ is convex and concave.
∇ Solution

펼 EXAMPLE

Show, that $f(x)=x^{\top} A x$, where $A \succeq 0$ - is convex on \mathbb{R}^{n}.
Solution

울 EXAMPLE

Show, that $f(A)=\lambda_{\max }(A)$ - is convex, if $A \in S^{n}$.

불 EXAMPLE

PL inequality holds if the following condition is satisfied for some $\mu>0$,

$$
\|\nabla f(x)\|^{2} \geq \mu\left(f(x)-f^{*}\right) \forall x
$$

The example of function, that satisfy PL-condition, but is not convex. $f(x, y)=$ $\frac{(y-\sin x)^{2}}{2}$

References

- Steven Boyd lectures
- Suvrit Sra lectures
- Martin Jaggi lectures
- Example pf PI non-convex function Open in Colab

