

Theory / Convex function

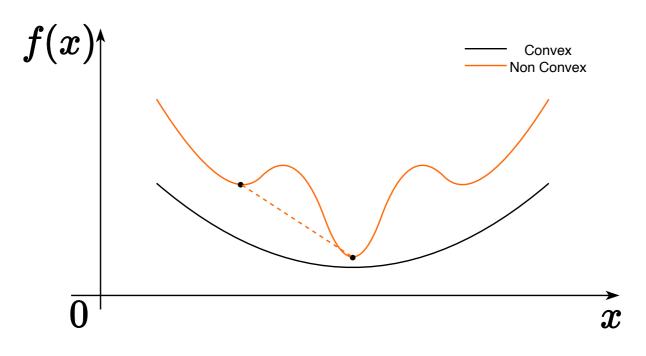
Convex function

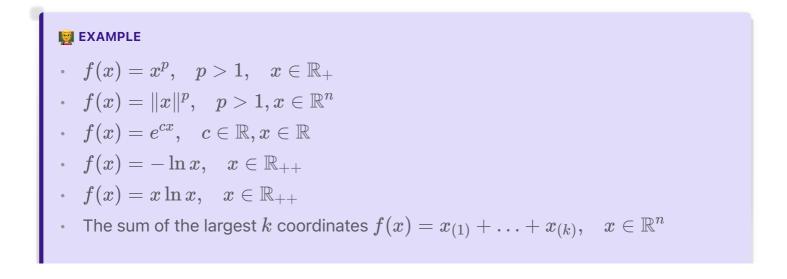
The function f(x), which is defined on the convex set $S \subseteq \mathbb{R}^n$, is called convex on S, if:

$$f(\lambda x_1+(1-\lambda)x_2)\leq \lambda f(x_1)+(1-\lambda)f(x_2)$$

for any $x_1, x_2 \in S$ and $0 \leq \lambda \leq 1$.

If above inequality holds as strict inequality $x_1 \neq x_2$ and $0 < \lambda < 1$, then function is called strictly convex on S.





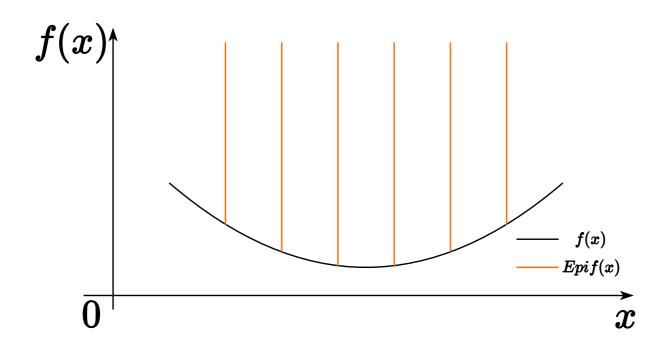
- $egin{aligned} f(X) &= \lambda_{max}(X), \quad X = X^T \ f(X) &= -\log \det X, \quad X \in S^n_{++} \end{aligned}$

Epigraph

For the function f(x), defined on $S \subseteq \mathbb{R}^n$, the following set:

$${
m epi}\ f = \{[x,\mu]\in S imes \mathbb{R}: f(x) \leq \mu\}$$

is called **epigraph** of the function f(x).

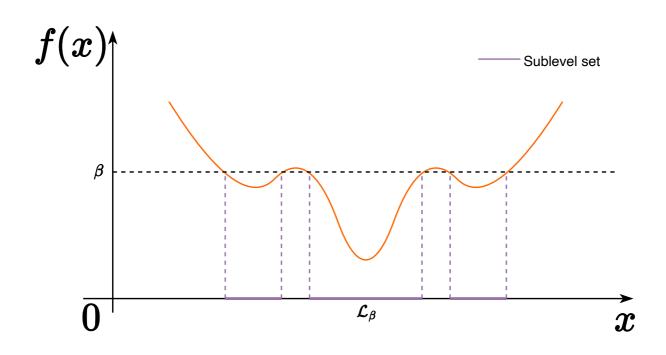


Sublevel set

For the function f(x), defined on $S\subseteq \mathbb{R}^n$, the following set:

$$\mathcal{L}_eta = \{x \in S: f(x) \leq eta\}$$

is called **sublevel set** or Lebesgue set of the function f(x).



Criteria of convexity

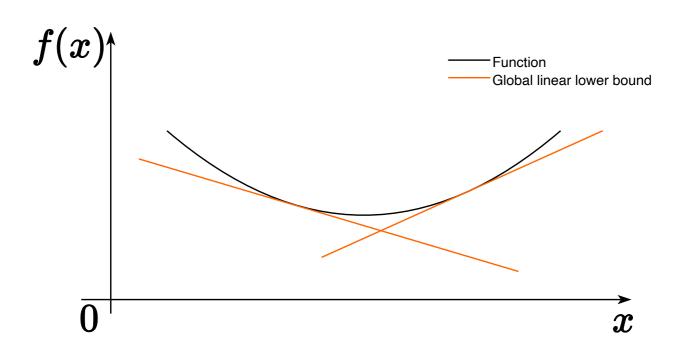
First order differential criterion of convexity

The differentiable function f(x) defined on the convex set $S\subseteq \mathbb{R}^n$ is convex if and only if $orall x,y\in S$:

$$f(y) \ge f(x) +
abla f^T(x)(y-x)$$

Let $y = x + \Delta x$, then the criterion will become more tractable:

$$f(x+\Delta x) \geq f(x) +
abla f^T(x)\Delta x$$



Second order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$abla^2 f(x) \succeq 0$$

In other words, $\forall y \in \mathbb{R}^n$:

 $\langle y,
abla^2 f(x) y
angle \geq 0$

Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

EXAMPLE Let a norm $\|\cdot\|$ be defined in the space U. Consider the set: $K := \{(x,t) \in U \times \mathbb{R}^+ : \|x\| \le t\}$ which represents the epigraph of the function $x \mapsto \|x\|$. This set is called the cone norm. According to statement above, the set K is convex.

In the case where $U = \mathbb{R}^n$ and $||x|| = ||x||_2$ (Euclidean norm), the abstract set K transitions into the set:

$\{(x,t)\in\mathbb{R}^n imes\mathbb{R}^+:\|x\|_2\leq t\}$

Connection with sublevel set

If f(x) - is a convex function defined on the convex set $S \subseteq \mathbb{R}^n$, then for any β sublevel set \mathcal{L}_β is convex.

The function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is closed if and only if for any β sublevel set \mathcal{L}_β is closed.

Reduction to a line

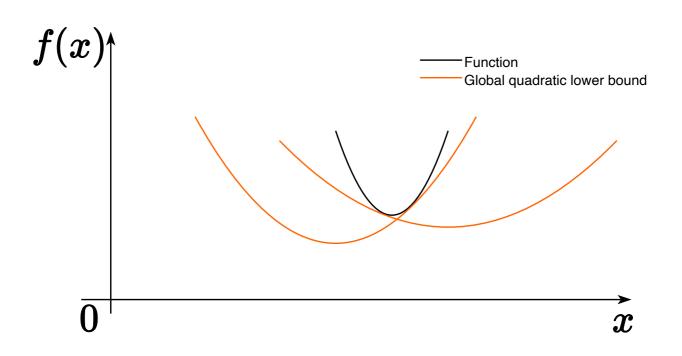
 $f: S \to \mathbb{R}$ is convex if and only if S is a convex set and the function g(t) = f(x + tv)defined on $\{t \mid x + tv \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^n$, which allows to check convexity of the scalar function in order to establish convexity of the vector function.

Strong convexity

f(x), defined on the convex set $S \subseteq \mathbb{R}^n$, is called μ -strongly convex (strongly convex) on S, if:

$$f(\lambda x_1+(1-\lambda)x_2)\leq \lambda f(x_1)+(1-\lambda)f(x_2)-\mu\lambda(1-\lambda)\|x_1-x_2\|^2$$

for any $x_1, x_2 \in S$ and $0 \leq \lambda \leq 1$ for some $\mu > 0$.



Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is μ -strongly convex if and only if $\forall x, y \in S$:

$$f(y)\geq f(x)+
abla f^T(x)(y-x)+rac{\mu}{2}\|y-x\|^2$$

Let $y = x + \Delta x$, then the criterion will become more tractable:

$$f(x+\Delta x) \geq f(x) +
abla f^T(x)\Delta x + rac{\mu}{2} \|\Delta x\|^2$$

Second order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$abla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y,
abla^2 f(x) y
angle \geq \mu \|y\|^2$$

Facts

- f(x) is called (strictly) concave, if the function -f(x) is (strictly) convex.
- Jensen's inequality for the convex functions:

$$f\left(\sum_{i=1}^n lpha_i x_i
ight) \leq \sum_{i=1}^n lpha_i f(x_i)$$

for $\alpha_i \ge 0$; $\sum_{i=1}^n \alpha_i = 1$ (probability simplex) For the infinite dimension case:

$$f\left(\int\limits_{S}xp(x)dx
ight)\leq\int\limits_{S}f(x)p(x)dx$$

If the integrals exist and $p(x) \geq 0, \quad \int\limits_S p(x) dx = 1$

- If the function f(x) and the set S are convex, then any local minimum $x^* = \arg\min_{x\in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.
- Let f(x) be a convex function on a convex set $S \subseteq \mathbb{R}^n$. Then f(x) is continuous $\forall x \in \mathbf{ri}(S)$.

Operations that preserve convexity

- Non-negative sum of the convex functions: $lpha f(x)+eta g(x), (lpha\geq 0, eta\geq 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.
- Pointwise maximum (supremum): If $f_1(x),\ldots,f_m(x)$ are convex, then $f(x)=\max\{f_1(x),\ldots,f_m(x)\}$ is convex.
- If f(x,y) is convex on x for any $y\in Y$: $g(x)=\displaystyle{\sup_{y\in Y}}f(x,y)$ is convex.
- If f(x) is convex on S, then g(x,t)=tf(x/t) is convex with $x/t\in S, t>0.$
- Let $f_1: S_1 \to \mathbb{R}$ and $f_2: S_2 \to \mathbb{R}$, where $\operatorname{range}(f_1) \subseteq S_2$. If f_1 and f_2 are convex, and f_2 is increasing, then $f_2 \circ f_1$ is convex on S_1 .

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponentially convex: $[f(x_i+x_j)] \succeq 0$, for x_1,\ldots,x_n
- Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$
- Quasiconvex: $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$
- Pseudoconvex: $\langle
 abla f(y), x-y
 angle \geq 0 \longrightarrow f(x) \geq f(y)$
- Discrete convexity: $f:\mathbb{Z}^n
 ightarrow\mathbb{Z}$; "convexity + matroid theory."

👰 EXAMPLE

Show, that $f(x) = c^{ op} x + b$ is convex and concave.

Solution

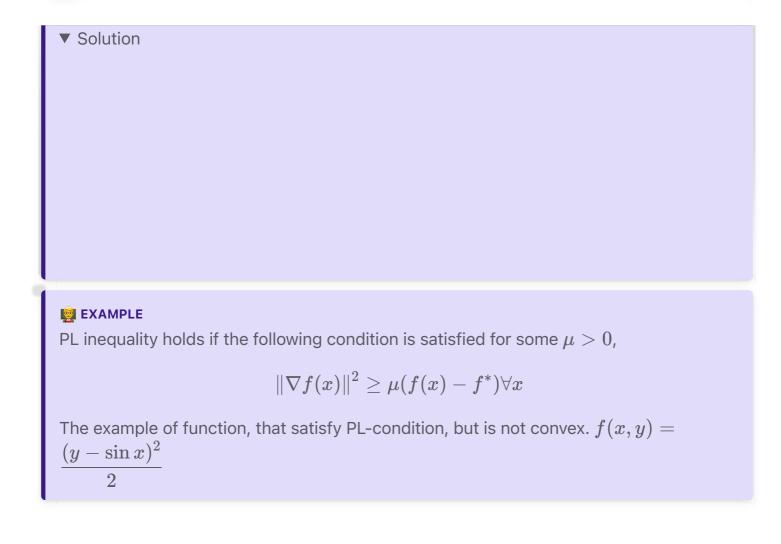
EXAMPLE

Show, that $f(x) = x^{\top}Ax$, where $A \succeq 0$ - is convex on \mathbb{R}^n .

Solution

EXAMPLE

Show, that $f(A) = \lambda_{max}(A)$ - is convex, if $A \in S^n$.



References

- Steven Boyd lectures
- Suvrit Sra lectures
- Martin Jaggi lectures
- * Example pf Pl non-convex function Open in Colab