1 Definition

An important property of a continuous convex function f(:):) is that at any chosen point xg forallz € dom f the inequality holds:

f(z) > f(zo) + (9, — z0)

for some vector g, i.e., the tangent to the graph of the function is the global estimate from below for the function.
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f(zo) + (g, — x0)

Figure 1: Taylor linear approximation serves as a global lower bound for a convex function

o If f(z) is differentiable, then g = V f(z)
e Not all continuous convex functions are differentiable &3

We wouldn’t want to lose such a nice property.

1.1 Subgradient

Avector g is called the subgradient of a function f(z) : S — Ratapointzg if Vo € S:
f(z) = f(zo) + (9,2 — z0)

k&l Example
Find 8f (z),if f(z) = |z|
Q Solution

The problem can be solved either geometrically (at each point of the numerical line indicate the angular coefficients of the lines globally supporting the
function from the bottom), or by the Moreau-Rockafellar theorem, considering f(:B) as a point-wise maximum of convex functions:

f(z) = max{—=z,z}




f(z) = [z 0f (z)

\ 4

Figure 2: Subgradient of ||

1.2 Subdifferential

\ 4

The set of all subgradients of a function f () ata point z is called the subdifferential of f at x( and is denoted by 9 f ().
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Figure 3: Subgradient calculus

e Ifzy € riS, then Of(zg) is a convex compact set.
e The convex function f(z) is differentiable at the point £y = 0f(xo) = {V f(x)}$
o If0f(xg) #0 V€ S, then f(x)isconvexon S.

2 Subdifferentiability and convexity

() Question

Is it correct, that if the function has a subdifferential at some point, the function is convex?

Ed Example

Zo

8Y



Zo

Find0f (z),if f(z) = sinz, x € [7/2;27] >
0 T T 3_7T 2m w
2 2
-1
G Solution
[(—oo;cos zo), =73
0 T € (E'mo)
bl _ ) 29
sf(@) 1 cosz, x € [mo; 27)
L [1;00), z=2m

@2 Theorem

Subdifferential of a differentiable function Let f : S — R be a function defined on the set S in a Euclidean space R™. If 2y € ri(.S) and f is
differentiable at x(, then either 3f(9c0) =0Qor 6f(:c0) = {Vf(:co)}. Moreover, if the function f is convex, the first scenario is impossible.

Q Proof

1. Assume, that s € O f (o) forsome s € R" distinct from V f (). Letv € R" be a unit vector. Because Z is an interior point of S, there exists
6 > Osuchthatzg + tv € Sforall0 < ¢ < §. By the definition of the subgradient, we have

f(zo +tv) > f(zo) + t(s,v)

which implies:

f(zo +tv) — f(z0)
t

> (s,0)
forall0 < t < 4. Taking the limit as  approaches 0 and using the definition of the gradient, we get:

(Vo) v) = lim L Z ) = f(@0)

t—0;0<t<§ t

> (s,0)

2. Fromthis, (s — V f(z0), v) > 0.Dueto the arbitrariness of v, one can set

_ 8= Vf(=z)
Is = V£ (o)’
leadingto s = V f (o).

3. Furthermore, if the function f is convex, then according to the differential condition of convexity f(z) > f(zo) + (Vf(z0),z — @) forallz €
S. But by definition, this means V f (o) € 0f (o).

Itis interesting to mention, that the statement for the convex function could be strengthened. Let f : S — IR be a convex function defined on
the set S in a finite-dimensional Euclidean space R™, and let zy € ri(.9). Then, f is differentiable at  if and only if the subdifferential
Of () contains exactly one element. In this case, 0 f (zg) = {V f(z0)}-

() Question
Let f : § — R be afunction defined on the set .S in a Euclidean space, and let £y € S. Show that the point ¢ is a minimum of the function f if and only if
0e af(zﬂ())

(&) Question

Is it correct, that if the function is convex, it has a subgradient at any point?



Convexity follows from subdifferentiability at any point. A natural question to ask is whether the converse is true: is every convex function
subdifferentiable? It turns out that, generally speaking, the answer to this question is negative.

Kl Example
Let f : [0, 00) — Rbethefunction defined by f(z) := —y/x.Then,0f(0) =
Q Solution

Assume, that s € Of(0) forsome s € R. Then, by definition, we must have sz < —,/z forall z > 0. From this, we can deduce s < —/1forallz >
0. Taking the limit as & approaches 0 from the right, we get s < —00, which isimpossible.

3 Subdifferential calculus

@2 Theorem

Moreau - Rockafellar theorem (subdifferential of a linear combination). MycTtb fl(:z:) - BbINYK/Ible YHKLMN Ha BbINYK/bIX MHOXecTBax Sy, © = 1, n.
n n n
Toraa, ecnu [ riS; # 0o dyrkuma f(z) = 3 a; fi(x), a; > 0umeer cy6pnddepenuyman g f () namHoxectse S = (] S;u

i=1 i=1 i=1

an Zazas fz

@2 Theorem
Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum). MycTb fz(m) - BbINYK/Ible DYHKLMM Ha OTKPBITOM BbinyknoM MHoxecTse S C

R"™, 2y € S, anotoyeuHblit makcumym onpepensietcs kak f () = max f;(z). Torpa:
K3

0sf(xo) = conv U 0s fi(xo) ¢

iEI(wo)

mel(z) = {i € [1:m]: fi(z) = f(z)}

Chain rule for subdifferentials MycTb g1, . . . , g, - BbINYK/bIE DYHKLMM Ha OTKPbITOM Bbinyknom MHoxecTee S C R”, g = (gl, ey gm) -
obpa3oBaHHas 13 HUX BEKTOP - hYHKLWMSA, Y - MOHOTOHHO HeybbiBatoLas Bbinyknas PyHKLMSA Ha OTKPLITOM BbIMYK/I0M MHOXeCTBe UCR™,

npuyem g(S) C U. Torga cybanddepeHuman dyHKumu f(m) =@ (g(m))s nmeeT BUA:

of@) = |J (D poa@) |,

pEIp(u) \i=1

raeu = g(z)

B yacTHoCTU, ecnn hyHKUMS © anddepeHLmpyema B Touke U = g(.’c), To hopMyna 3anuLLIETCs Tak:

chp )99;(z)
=1

0(af)(z) = adf(z),forac > 0

0>, fi)(z) = > 0fi(x), fi - srinyknbie dyHKumM

a(f(A:L‘ + b))(l‘) = ATaf(Aa? + b), f - BbINyKnas dyHkums
z € Of (z)ifandonlyifz € 0f*(z2).

4 Examples

KoHLenTyanbHO, pa3fiMyatoT Tpu cnocoba pelleHns 3agay Ha mouck cybrpagueHTa:

e Teopembl Mopo - Pokadennapa, KOMNO3nLmm, MakcMyma
e [eomeTpuyecKn



e [loonpegeneHuno

K Example
Haittn 0f (x),ecnn f(z) = | — 1| + |z + 1]

Q Solution

CoBepLUEHHO aHaNIOTMYHO NpUMeHsieM TeopeMy Mopo - Pokadennapa, yuuTbiBas cnegymollee:

-1, z <1 -1, z<—1
0fi(z) = ¢ [-1;1], z=1 Ofr(x) =q[-1;1], z=-1
1, z>1 1, z>—1
Takum o6paszom:
-2, z<—1
[_2;0L z=-1
of(z) =10, “1<z<1
[0;2], =z=1
2, z>1

K Example
Haiitn O f (), ecnn f(z) = |cf x| + |es 2]
Q Solution

Myctsb f1 (x) = |clT:E\, afs (x) = |c;x\ Tak Kak 3Tv hyHKLMM BbINyKAbI, cybanddepeHuman nx cyMMmbl paBeH cymme cybaunddepeHumanos. Hangem
KaXbl U3 HUX:

—c1, ez <0 —c2, gz <0
Ofi(z) =0 (max{clT:B, —clTx}) = 4 conv(—ci;ei), clx=00f(z)=20 (maX{CzT% —C;fﬂ}) = 4 conv(—cy; c2), cz=0
c1, clTw >0 c2, cga: >0

[Janee MHTepecHbIMU NPEACTABASIOTCS TMLLb PA3/IMYHbIE B3aVMHbIE PAcrofIOKEHUS BEKTOPOB C| U Co, PACCMOTPEHMNE KOTOPbIX NpefiaraeTcs YyutaTesto.

K Example

Haittn O f (), ecrm f(x) = [max(0, fo(x))]?. 3pecs fo(x) - BbinyKnan dywkums Ha oTKpbITOM BbINyKOM MHOXecTBe S, q > 1.

Q Solution

CornacHo Teopeme o komnosnumn (byHkuns @(x) = x4 - puddeperunpyema), a g(x) = max(0, fo(z)) umeem: df(z) = q(g(z))?10g(z)
Mo TeopeMe 0 NOTOYEYHOM MaKCUMyMe:

fo(w),  folw) >0,
dg(x) = { {0}, fo(z) <0
Uala=Ad, 0<A<1, d €0fo(a)}, folz) =0

Kl Example
Haiitn O f (), ecnm f(x) = ||z ||1

Q Solution
Mo onpepeneHuto

lz|li = |z1] + |x2| + - .- + |@0] = s121 + S222 + ... + 82y

PaccMoTpHM 3Ty CyMMY Kak MOTOYeUHbIV MakcuMyM nuHelHbIx hyHkumii no z: g () = s

onpepensietcs Ha6opom koadduumenTtos {s; ;.

T,roes; = {—1, 1}. Kaxpas Takas yHKUMSA OAHO3HAYHO

Toraa no Teopeme [ly60BULKOrO - MUAIOTIHA, B Kaxaoii Touke 0 f = conv < U 8gi(x)>
iel(x)



—s, sle <0
3ameTum, uto dg(z) = 0 (max{sTm, —sch}) = { conv(—s;s), s'z=0.
[s, s'e>0

Mpuyem, NpaBuo BbIGopa “aKTUBHOI” hyHKLMM MOTOYEYHOrO MaKCUMyMa B KaXao0ii TOUKe Cneaytollee: * ECu j-as koopanHaTa TOUKM OTpuULaTenbHa,

sg = —1 * Ecnn j-as KoopayHaTa TOUKM MOAOKUTENbHA, sf = 1 * Ecnu j-as KoopayHaTa TOUKM paBHa HyJIK0, TO NOAXOAAT 06a BapuaHTa Ko3hdULMEHTOB

1 COOTBETCTBYIOLLMX UM (DYHKLMIA, @ 3HAYUT, HEOOXOAMMO BKtOYATb CybrpafMeHTbl 3TUX PYHKLUIA B 06beanHeHne B Teopeme [ly6oBHLKOTO - MUIOTUHA.
B ntore nony4yaem oTBeT:

of(x) =19 : lglw =<1, g'z=|z|:}

Kl Example
Subdifferential of the Norm. Let V' be a finite-dimensional Euclidean space, and 2o € V. Let||-|| be an arbitrary norm in V' (not necessarily induced by the
scalar product), and let ||+ ||« be the corresponding conjugate norm. Then,

By.(0,1), if 2 = 0,

a . =
I =4 € Vsl < 15 s,00) = ol = {5 € V ¢ sl = 1 5,20) = o]}, otherwise

Where By, (0, 1) is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector s € V with ||s||« = 1isa subgradient
of the norm ||-|| at point zg # 0 if and only if the Hélder’s inequality (s, o) < ||xo]| becomes an equality.

Q Proof

Let s € V. By definition, s € 9||-||(zo) ifand only if
(s,2) = ll2] < (5,0) ~ |z, forallz € V,
or equivalently,
sup{(s,z) — ||z(|} < (s, 20) — [|zo]-
zeV
By the definition of the supremum, the latter is equivalent to
sup{(s, z) — ||z(|} = (s, 20) — ||zo]-
zeV

Itis important to note that the expression on the left side is the supremum from the definition of the Fenchel conjugate function for the norm, which is
known to be

07 lf”S”* S 17
sup(s, ) — ||z||; =
z€€{< @) = lell} 400, otherwise.

Thus, equation is equivalent to || s||« < 1and (s, o) = ||zo]|-

Consequently, it remains to note that for g # 0, the inequality HSH* < 1 must become an equality since, when ||sH* < 1, Hélder’s inequality implies
(s,20) < |[s]lsl[ol| < l|zo]l-

The conjugate norm in Example above does not appear by chance. It turns out that, in a completely similar manner for an arbitrary function f (not
just for the norm), its subdifferential can be described in terms of the dual object — the Fenchel conjugate function.

Kl Example
Characterization of the subdifferential through the conjugate function. Let f : £ — R be a function defined on the set F in a Euclidean space. Let
xo € Fandlet f*: E* — R be the conjugate function. Show that

0f(xo) = {s € E": (s,z0) = f*(s) + f(z0)},

In other words, a vector § € E* is a subgradient of the function f at point & if and only if the Fenchel-Young inequality <s, :130> < f*(s) +
f(zq) becomes an equality.

Inthe case f = ||-
becomes.

, we have f* = (53“4“*(0,1), i.e., the conjugate function is equal to the indicator function of the ball BH'H* (0, 1), and equation

| @2 Theorem



Criteria for equality in the Fenchel-Young inequality. Let f : £ — IR be a convex closed function, f* : E* — R the conjugate function, and let z €
E, s € E*. The following statements are equivalent:

a. (s,z) = f*(s) + f().

b. s € 0f ().

c. ¢ € 9f*(s).

Q Proof

According to Exercise above, the condition (s, z) = f*(s) + f(z)isequivalentto s € df(x). On the other hand, since f is convex and closed, by the
Fenchel-Moreau theorem, we have f** = f. Applying Exercise 1.13 to the function f*, it follows that the equality (s, ) = f*(s) + f(z) is equivalent

tox € If*(s).
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