
Note, that there is an agreement in notation of mathematical programming. The problems of the following type are called Convex optimization
problem:

where all the functions  are convex and all the equality constraints are a!ine. It sounds a bit strange, but not all
convex problems are convex optimization problems.

where  is a convex function, defined on the convex set . The necessity of a!ine equality constraint is essential.

This problem is not a convex optimization problem (but implies minimizing the convex function over the convex set):

while the following equivalent problem is a convex optimization problem

Such confusion in notation is sometimes being avoided by naming problems of type  as abstract form convex optimization problem.
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1 Convex optimization problem
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Duality lets us associate to any constrained optimization problem a concave maximization problem, whose solutions lower bound the optimal
value of the original problem. What is interesting is that there are cases, when one can solve the primal problem by first solving the dual one. Now,
consider a general constrained optimization problem:

We’ll build , that preserves the uniform bound:

As a consequence:

We’ll consider one of many possible ways to construct  in case, when we have a general mathematical programming problem with functional
constraints:

And the Lagrangian, associated with this problem:

We assume  is nonempty. We define the Lagrange dual function (or just dual function)  as

the minimum value of the Lagrangian over : for 

When the Lagrangian is unbounded below in , the dual function takes on the value . Since the dual function is the pointwise infimum of a
family of a!ine functions of , it is concave, even when the original problem is not convex.

Let us show, that the dual function yields lower bounds on the optimal value  of the original problem for any . Suppose some  is a
feasible point ( ) for the original problem, i.e.,  and . Then we have:

Hence

A natural question is: what is the best lower bound that can be obtained from the Lagrange dual function? This leads to the following optimization
problem:

1 Motivation

 Primal: f(x) →  Dual: g(y) →
x∈S
min

y∈Ω
max

g(y)

g(y) ≤ f(x) ∀x ∈ S, ∀y ∈ Ω
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max f(x)
x∈S
min

g(y)
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f (x) →0
x∈Rn
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inf f (x) + λ f (x) + ν h (x)
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inf ( 0
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i i
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∑
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i i )
x −∞

(λ, ν)

p∗ λ ⪰ 0, ν x̂

∈x̂ S f ( ) ≤i x̂ 0 h ( ) =i x̂ 0, λ ⪰ 0

L( , λ, ν) =x̂ f ( ) +0 x̂ +

≤0

λ f( )⊤ x̂ ≤

=0

ν h( )⊤ x̂ f ( )0 x̂

g(λ, ν) = L(x, λ, ν) ≤
x∈S
inf L( , λ, ν) ≤x̂ f ( )0 x̂

g(λ, ν) ≤ p∗
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The term “dual feasible”, to describe a pair  with  and , now makes sense. It means, as the name implies, that
 is feasible for the dual problem. We refer to  as dual optimal or optimal Lagrange multipliers if they are optimal for the above

problem.

Primal Dual

Function

Variables

Constraints

Problem

Optimal

We are addressing a problem within a non-empty budget set, defined as follows:

with the matrix .

This problem is devoid of inequality constraints, presenting  linear equality constraints instead. The Lagrangian is expressed as 
, spanning the domain . The dual function is denoted by . Given that  manifests as a convex

quadratic function in terms of , the minimizing  can be derived from the optimality condition

leading to . As a result, the dual function is articulated as

emerging as a concave quadratic function within the domain . According to the lower bound property (5.2), for any , the following holds true:

Which is a simple non-trivial lower bound without any problem solving.

s.t. 

g(λ, ν) →
λ∈R , ν∈Rm p

max

λ ⪰ 0

(λ, ν) λ ⪰ 0 g(λ, ν) > −∞
(λ, ν) (λ , ν )∗ ∗

1.1 Summary

f (x)0 g(λ, ν) = L(x, λ, ν)
x∈S
min

x ∈ S ⊆ Rn λ ∈ R , ν ∈+
m Rp

f (x) ≤ 0, i = 1, … , mi

h (x) = 0, i = 1, … , pi

λ ≥i 0, ∀i ∈ 1, m

s.t. 

f (x) →0
x∈Rn
min

f (x) ≤ 0, i = 1, … , mi

h (x) = 0, i = 1, … , pi

g(λ, ν)

s.t. 

→
λ∈R ,ν∈Rm p

max

λ ⪰ 0

x  if feasible,∗

p = f (x )∗
0

∗
λ , ν  if  max  is achieved,∗ ∗

d = g(λ , ν )∗ ∗ ∗

Least-squares solution of linear equations

min x xT

s.t. Ax = b,

A ∈ Rm×n

Solution

m L(x, ν) = x x +T

ν (Ax −T b) R ×n Rm g(ν) = inf L(x, ν)x L(x, ν)
x x

∇ L(x, ν) =x 2x + A ν =T 0,

x = −(1/2)A νT

g(ν) = L(−(1/2)A ν, ν) =T −(1/4)ν AA ν −T T b ν,T

Rp ν ∈ Rp

−(1/4)ν AA ν −T T b ν ≤T inf{x x ∣ Ax =T b}.

Two-way partitioning problem



We are examining a (nonconvex) problem:

The matrix  belongs to . The constraints stipulate that the values of  can only be 1 or , rendering this problem analogous to finding a vector, with
components , that minimizes . The set of feasible solutions is finite, encompassing  points, thereby allowing, in theory, for the resolution of
this problem by evaluating the objective value at each feasible point. However, as the count of feasible points escalates exponentially, this approach is
viable only for modest-sized problems (for instance, when ). Generally, and especially when  exceeds 50, the problem poses a formidable
challenge to solve.
This problem can be construed as a two-way partitioning problem over a set of  elements, denoted as : A viable  corresponds to the partition

The coe!icient  in the matrix represents the expense associated with placing elements  and  in the same partition, while  signifies the cost of
segregating them. The objective encapsulates the aggregate cost across all pairs of elements, and the challenge posed by problem is to find the partition
that minimizes the total cost.
We now derive the dual function for this problem. The Lagrangian is expressed as

By minimizing over , we procure the Lagrange dual function:

exploiting the realization that the infimum of a quadratic form is either zero (when the form is positive semidefinite) or  (when it’s not).
This dual function furnishes lower bounds on the optimal value of the problem. For instance, we can adopt the particular value of the dual variable

which is dual feasible, since

This renders a simple bound on the optimal value 

The code for the problem is available here 

#

minimize x W xT

subject to x = 1, i = 1, … , n,i
2

Solution

W Sn xi −1
±1 x W xT 2n

n ≤ 30 n

n {1, … , n} x

{1, … , n} = {i∣x =i −1} ∪ {i∣x =i 1}.

Wij i j −Wij

L(x, ν) = x W x +T ν (x −
i=1

∑
n

i i
2 1) = x (W +T diag(ν))x − 1 ν.T

x

g(ν) = x (W +
x

inf T diag(ν))x − 1 ν =T { −1 νT

−∞
if W + diag(ν) ⪰ 0
otherwise,

−∞

ν = −λ (W )1min

W + diag(ν) = W − λ (W )I ⪰min 0.

p∗

p ≥∗ −1 ν =T nλ (W ).min

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Partitioning.ipynb


It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we have:

While the di!erence between them is o"en called duality gap:

Note, that we always have weak duality, if we’ve formulated primal and dual problem. It means, that if we have managed to solve the dual
problem (which is always concave, no matter whether the initial problem was or not), then we have some lower bound. Surprisingly, there are
some notable cases, when these solutions are equal.

Strong duality happens if duality gap is zero:

Notice: both  and  may be .

Several su!icient conditions known!
“Easy” necessary and su!icient conditions: unknown.

In the Least-squares solution of linear equations example above calculate the primal optimum  and the dual optimum  and check whether this problem
has strong duality or not.

Construction of lower bound on solution of the direct problem.

It could be very complicated to solve the initial problem. But if we have the dual problem, we can take an arbitrary  and substitute it in
 - we’ll immediately obtain some lower bound.

Checking for the problem’s solvability and attainability of the solution.

From the inequality  follows: if , then  and vice versa.

Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds:  we lose nothing.

Obtaining a lower bound on the function’s residual.

 for an arbitrary  (suboptimality certificate). Moreover, 

Dual function is always concave

As a pointwise minimum of a!ine functions.

To find the Euclidean projection of  onto probability simplex , we solve the following problem:

Hint: Consider the problem of minimizing $|y - x|_2^2 $ subject to subject to . Form the partial Lagrangian

leaving the constraint  implicit. Show that  minimizes  over .

2 Strong duality

p ≥∗ d∗

p −∗ d ≥∗ 0

p =∗ d∗

p∗ d∗ +∞

Question

p∗ d∗

3 Useful features

y ∈ Ω
g(y)

g(y) ≤
y∈Ω

max f (x)
x∈S
min 0 f (x) =

x∈S
min 0 −∞ Ω = ∅

g(y ) =∗ f (x )0
∗

f (x) −0 f ≤0
∗ f (x) −0 g(y) y ∈ Ω p ∈∗ [g(y), f (x)], d ∈0

∗ [g(y), f (x)]0

Projection onto probability simplex

x ∈ Rn P = {z ∈ R ∣n z ⪰ 0, 1 z =⊤ 1}

s.t. 

∥y − x∥ →
2
1

2
2

y∈R ⪰0n
min

1 y = 1⊤

y ⪰ 0, 1 y =⊤ 1

L(y, ν) = ∥y −
2

1
x∥ +2

2 ν(1 y −⊤ 1),

y ⪰ 0 y = (x − ν1)+ L(y, ν) y ⪰ 0



Find the projection of a point  on the Euclidian ball

If for a convex optimization problem (i.e., assuming minimization,  are convex and  are a!ine), there exists a point  such that  and
 (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and su!icient.

The only point in the budget set is: . However, it is impossible to find a non-negative , such that

On rare occasions strong duality obtains for a nonconvex problem. As an important example, we consider the problem of minimizing a nonconvex quadratic
function over the unit ball

where  and . Since , this is not a convex problem. This problem is sometimes called the trust region problem, and arises in
minimizing a second-order approximation of a function over the unit ball, which is the region in which the approximation is assumed to be approximately
valid.

Lagrangian and dual function

Dual problem:

Suppose we have a general optimization problem (from the chapter)

Projection on the Euclidian Ball

x

s.t. 

∥y − x∥ →
2
1

2
2

y∈Rn
min

∥y∥ ≤ 12
2

4 Slater’s condition
Theorem

f , f0 i hi x h(x) = 0
f (x) <i 0

An example of convex problem, when Slater’s condition does not hold

min{f (x) =0 x ∣ f (x) =1 ≤
2
x2

0},

x =∗ 0 λ ≥∗ 0

∇f (0) +0 λ ∇f (0) =∗
1 1 + λ x =∗ 0.

A nonconvex quadratic problem with strong duality

s.t. 

x Ax + 2b x →⊤ ⊤

x∈Rn
min

x x ≤ 1⊤

A ∈ S , A ⋡n 0 b ∈ Rn A ⋡ 0

Solution

L(x, λ) = x Ax +⊤ 2b x +⊤ λ(x x −⊤ 1) = x (A +⊤ λI)x + 2b x −⊤ λ

g(λ) = {−b (A + λI) b − λ⊤ †

−∞,

 if A + λI ⪰ 0

 otherwise

s.t. 

− b (A + λI) b − λ →⊤ †

λ∈R
max

A + λI ⪰ 0

s.t. 

− − λ →
i=1

∑
n

λ + λi

(q b)i
⊤ 2

λ∈R
max

λ ≥ −λ (A)min

4.1 Reminder of KKT statements:

https://new.fmin.xyz/docs/theory/Optimality.html


and convex optimization problem (see corresponding chapter), where all equality constraints are a!ine: 

The Lagrangian is

The KKT system is:

If  is a solution of the original problem Equation 1, then if any of the following regularity conditions is satisfied:
Strong duality If  are di!erentiable functions and we have a problem Equation 1 with zero duality gap, then Equation 3 are
necessary (i.e. any optimal set  should satisfy Equation 3)
LCQ (Linearity constraint qualification). If  are a!ine functions, then no other condition is needed.
LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints and the gradients of the equality constraints are
linearly independent at 
SC (Slater’s condition) For a convex optimization problem Equation 2 (i.e., assuming minimization,  are convex and  is a!ine), there exists a point 
such that  and $ g_i(x) < 0$.

Than it should satisfy Equation 3

If a convex optimization problem Equation 2 with di!erentiable objective and constraint functions satisfies Slater’s condition, then the KKT conditions provide
necessary and su!icient conditions for optimality: Slater’s condition implies that the optimal duality gap is zero and the dual optimum is attained, so  is
optimal if and only if there are  that, together with , satisfy the KKT conditions.

The dual problem is thus

with (scalar) variable . Now suppose we have found an optimal dual variable  (There are several simple methods for solving a convex problem with

s.t. 

f (x) →0
x∈Rn
min

f (x) ≤ 0, i = 1, … , mi

h (x) = 0, i = 1, … , pi

(1)

h (x) =i a x −i
T b , i ∈i 1, … p

s.t. 

f (x) →0
x∈Rn
min

f (x) ≤ 0, i = 1, … , mi

Ax = b,

(2)

L(x, λ, ν) = f (x) +0 λ f (x) +
i=1

∑
m

i i ν h (x)
i=1

∑
p

i i

∇ L(x , λ , ν ) = 0x
∗ ∗ ∗

∇ L(x , λ , ν ) = 0ν
∗ ∗ ∗

λ ≥ 0, i = 1, … , mi
∗

λ f (x ) = 0, i = 1, … , mi
∗

i
∗

f (x ) ≤ 0, i = 1, … , mi
∗

(3)

KKT becomes necessary

x∗

f , … f , h , … h1 m 1 p

x , λ , ν∗ ∗ ∗

f , … f , h , … h1 m 1 p

x∗

fi hj x

h (x) =j 0

KKT in convex case

x∗

(λ , ν )∗ ∗ x∗

5 Connection between Fenchel duality and Lagrange duality
Example

s.t. 

f (x) = f (x ) →0

i=1

∑
n

i i
x∈Rn
min

a x = b⊤

s.t. 

− bν − f (−νa ) →
i=1

∑
n

i
∗

i
ν∈R
max

ν ≥ −λ (A)min

ν ∈ R ν∗

https://new.fmin.xyz/docs/theory/Convex_optimization_problem.html


one scalar variable, such as the bisection method.). It is very easy to recover the optimal value for the primal problem.

Let  and  — function, defined on the sets  and  in Euclidian Spaces  and  respectively. Let 
 be the conjugate functions to the  and  respectively. Let  — linear mapping. We call Fenchel - Rockafellar problem the

following minimization task:

where  — preimage of . We’ll build the dual problem using variable separation. Let’s introduce new variable
. The problem could be rewritten:

Lagrangian

Dual function

Now, we need to remember the definition of the conjugate function:

So, we have:

which allows us to formulate one of the most important theorems, that connects dual problems and conjugate functions:

Let  and  — function, defined on the sets  and  in Euclidian Spaces  and  respectively. Let  be
the conjugate functions to the  and  respectively. Let  — linear mapping. Let  - optimal values of primal and dual
problems:

Then we have weak duality: . Furthermore, if the functions  and  are convex and $A((E)) (G) $, then we have strong duality: . While points
 and  are optimal values for primal and dual problem if and only if:

f : E → R g : G → R E G V W f :∗ E →∗ R, g :∗

G →∗ R f g A : V → W

f(x) + g(Ax) →
x∈E∩A (G)−1

min

A (G) :=−1 {x ∈ V : Ax ∈ G} G

y = Ax

s.t. 

f(x) + g(y) →
x∈E, y∈G

min

Ax = y

L(x, y, λ) = f(x) + g(y) + λ (Ax −⊤ y)

g (λ)d = L(x, y, λ)
x∈E, y∈G

min

= f(x) + (A λ) x + g(y) − λ y =
x∈E
min [ ∗ ⊤ ]

y∈G
min [ ⊤ ]

= − (−A λ) x − f(x) − λ y − g(y)
x∈E
max [ ∗ ⊤ ]

y∈G
max [ ⊤ ]

λ y − g(y) =
y∈G

sup [ ⊤ ] {g (λ),∗

+∞,

 if λ ∈ G∗

 otherwise

(−A λ) x − f(x) =
x∈E

sup [ ∗ ⊤ ] {f (−A λ),∗ ∗

+∞,

 if λ ∈ (−A ) (E )∗ −1
∗

 otherwise

g (λ)d = L(x, y, λ) =
x∈E,y∈G

min

= {−g (λ) − f (−A λ)∗ ∗ ∗

−∞,

 if λ ∈ G ∩ (−A ) (E )∗
∗ −1

∗

 otherwise

Fenchel - Rockafellar theorem

f : E → R g : G → R E G V W f :∗ E →∗ R, g :∗ G →∗ R
f g A : V → W p , d ∈∗ ∗ [−∞, +∞]

p =∗ f(x) + g(Ax) →
x∈E∩A (G)−1

min

d =∗ f (−A λ) +∗ ∗ g (λ) →∗ ,
λ∈G ∩(−A ) (E )∗

∗ −1
∗

min

p ≥∗ d∗ f g p =∗ d∗

x ∈∗ E ∩ A (G)−1 λ ∈∗ G ∩∗ (−A ) (E )∗ −1
∗

−A λ∗ ∗

λ∗

∈ ∂f(x )∗

∈ ∂g(Ax )∗



Convex case is especially important since if we have Fenchel - Rockafellar problem with parameters , than the dual problem has the
form .
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(f , g, A)
(f , g , −A )∗ ∗ ∗

Example
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