
1 Motivation
Duality lets us associate to any constrained optimization problem a concave maximization problem, whose solutions lower bound the optimal
value of the original problem. What is interesting is that there are cases, when one can solve the primal problem by first solving the dual one. Now,
consider a general constrained optimization problem:

We’ll build , that preserves the uniform bound:

As a consequence:

We’ll consider one of many possible ways to construct  in case, when we have a general mathematical programming problem with functional
constraints:

And the Lagrangian, associated with this problem:

We assume  is nonempty. We define the Lagrange dual function (or just dual function)  as

the minimum value of the Lagrangian over : for 

When the Lagrangian is unbounded below in , the dual function takes on the value . Since the dual function is the pointwise infimum of a
family of a!ine functions of , it is concave, even when the original problem is not convex.

Let us show, that the dual function yields lower bounds on the optimal value  of the original problem for any . Suppose some  is a
feasible point for the original problem, i.e.,  and . Then we have:

Hence

A natural question is: what is the best lower bound that can be obtained from the Lagrange dual function? This leads to the following optimization
problem:
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The term “dual feasible”, to describe a pair  with  and , now makes sense. It means, as the name implies, that
 is feasible for the dual problem. We refer to  as dual optimal or optimal Lagrange multipliers if they are optimal for the above

problem.

1.1 Summary

Primal Dual
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Problem
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We are addressing a problem within a non-empty budget set, defined as follows:

with the matrix .

This problem is devoid of inequality constraints, presenting  linear equality constraints instead. The Lagrangian is expressed as 
, spanning the domain . The dual function is denoted by . Given that  manifests as a convex

quadratic function in terms of , the minimizing  can be derived from the optimality condition

leading to . As a result, the dual function is articulated as

emerging as a concave quadratic function within the domain . According to the lower bound property (5.2), for any , the following holds true:

Which is a simple non-trivial lower bound without any problem solving.
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We are examining a (nonconvex) problem:

The matrix  belongs to . The constraints stipulate that the values of  can only be 1 or , rendering this problem analogous to finding a vector, with
components , that minimizes . The set of feasible solutions is finite, encompassing  points, thereby allowing, in theory, for the resolution of
this problem by evaluating the objective value at each feasible point. However, as the count of feasible points escalates exponentially, this approach is
viable only for modest-sized problems (for instance, when ). Generally, and especially when  exceeds 50, the problem poses a formidable
challenge to solve.
This problem can be construed as a two-way partitioning problem over a set of  elements, denoted as : A viable  corresponds to the partition

The coe!icient  in the matrix represents the expense associated with placing elements  and  in the same partition, while  signifies the cost of
segregating them. The objective encapsulates the aggregate cost across all pairs of elements, and the challenge posed by problem is to find the partition
that minimizes the total cost.
We now derive the dual function for this problem. The Lagrangian is expressed as

By minimizing over , we procure the Lagrange dual function:

exploiting the realization that the infimum of a quadratic form is either zero (when the form is positive semidefinite) or  (when it’s not).
This dual function furnishes lower bounds on the optimal value of the problem. For instance, we can adopt the particular value of the dual variable

which is dual feasible, since

This renders a simple bound on the optimal value 

The code for the problem is available here 
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https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Partitioning.ipynb


2 Strong duality
It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we have:

While the di!erence between them is o"en called duality gap:

Note, that we always have weak duality, if we’ve formulated primal and dual problem. It means, that if we have managed to solve the dual
problem (which is always concave, no matter whether the initial problem was or not), then we have some lower bound. Surprisingly, there are
some notable cases, when these solutions are equal.

Strong duality happens if duality gap is zero:

Notice: both  and  may be .

Several su!icient conditions known!
“Easy” necessary and su!icient conditions: unknown.

In the Least-squares solution of linear equations example above calculate the primal optimum  and the dual optimum  and check whether this problem
has strong duality or not.

3 Useful features
Construction of lower bound on solution of the direct problem.

It could be very complicated to solve the initial problem. But if we have the dual problem, we can take an arbitrary  and substitute it in
 - we’ll immediately obtain some lower bound.

Checking for the problem’s solvability and attainability of the solution.

From the inequality  follows: if , then  and vice versa.

Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds:  we lose nothing.

Obtaining a lower bound on the function’s residual.

 for an arbitrary  (suboptimality certificate). Moreover, 

Dual function is always concave

As a pointwise minimum of a!ine functions.

To find the Euclidean projection of  onto probability simplex , we solve the following problem:

Hint: Consider the problem of minimizing  subject to subject to . Form the partial Lagrangian
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leaving the constraint  implicit. Show that  minimizes  over .

Find the projection of a point  on the Euclidian ball

4 Slater’s condition

If for a convex optimization problem (i.e., assuming minimization,  are convex and  are a!ine), there exists a point  such that  and
 (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and su!icient.

The only point in the budget set is: . However, it is impossible to find a non-negative , such that

On rare occasions strong duality obtains for a nonconvex problem. As an important example, we consider the problem of minimizing a nonconvex quadratic
function over the unit ball

where  and . Since , this is not a convex problem. This problem is sometimes called the trust region problem, and arises in
minimizing a second-order approximation of a function over the unit ball, which is the region in which the approximation is assumed to be approximately
valid.
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4.1 Reminder of KKT statements:

Suppose we have a general optimization problem (from the chapter)

and convex optimization problem (see corresponding chapter), where all equality constraints are a!ine: 

The Lagrangian is

The KKT system is:

If  is a solution of the original problem Equation 1, then if any of the following regularity conditions is satisfied:
Strong duality If  are di!erentiable functions and we have a problem Equation 1 with zero duality gap, then Equation 3 are
necessary (i.e. any optimal set  should satisfy Equation 3)
LCQ (Linearity constraint qualification). If  are a!ine functions, then no other condition is needed.
LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints and the gradients of the equality constraints are
linearly independent at 
SC (Slater’s condition) For a convex optimization problem Equation 2 (i.e., assuming minimization,  are convex and  is a!ine), there exists a point 
such that  and .

Than it should satisfy Equation 3

If a convex optimization problem Equation 2 with di!erentiable objective and constraint functions satisfies Slater’s condition, then the KKT conditions provide
necessary and su!icient conditions for optimality: Slater’s condition implies that the optimal duality gap is zero and the dual optimum is attained, so  is
optimal if and only if there are  that, together with , satisfy the KKT conditions.

5 Applications

5.1 Connection between Fenchel duality and Lagrange duality
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https://fmin.xyz/docs/theory/Optimality.html
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The dual problem is thus

with (scalar) variable . Now suppose we have found an optimal dual variable  (There are several simple methods for solving a convex problem with
one scalar variable, such as the bisection method.). It is very easy to recover the optimal value for the primal problem.

Let  and  — function, defined on the sets  and  in Euclidian Spaces  and  respectively. Let 
 be the conjugate functions to the  and  respectively. Let  — linear mapping. We call Fenchel - Rockafellar problem the

following minimization task:

where  — preimage of . We’ll build the dual problem using variable separation. Let’s introduce new variable
. The problem could be rewritten:

Lagrangian

Dual function

Now, we need to remember the definition of the conjugate function:

So, we have:

which allows us to formulate one of the most important theorems, that connects dual problems and conjugate functions:
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problems:

Then we have weak duality: . Furthermore, if the functions  and  are convex and , then we have strong
duality: . While points  and  are optimal values for primal and dual problem if and only if:

Convex case is especially important since if we have Fenchel - Rockafellar problem with parameters , than the dual problem has the
form .

5.2 Sensitivity analysis

Let us switch from the original optimization problem

To the perturbed version of it:
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In scenarios where strong duality holds, we can draw several insights about the sensitivity of optimal solutions in relation to the Lagrange
multipliers. These insights are derived from the inequality expressed in equation above:

1. Impact of Tightening a Constraint (Large ):
When the th constraint’s Lagrange multiplier, , holds a substantial value, and if this constraint is tightened (choosing ), there is a
guarantee that the optimal value, denoted by , will significantly increase.

2. E!ect of Adjusting Constraints with Large Positive or Negative :

If  is large and positive and  is chosen, or
If  is large and negative and  is selected,
then in either scenario, the optimal value  is expected to increase greatly.

3. Consequences of Loosening a Constraint (Small ):
If the Lagrange multiplier  for the th constraint is relatively small, and the constraint is loosened (choosing ), it is anticipated that
the optimal value  will not significantly decrease.

4. Outcomes of Tiny Adjustments in Constraints with Small :

When  is small and positive, and  is chosen, or
When  is small and negative, and  is opted for,
in both cases, the optimal value  will not significantly decrease.

These interpretations provide a framework for understanding how changes in constraints, reflected through their corresponding Lagrange
multipliers, impact the optimal solution in problems where strong duality holds.

5.3 Local sensitivity

Suppose now that  is di!erentiable at .

To show this result we consider the directional derivative of  along the direction of some -th basis vector :

From the inequality Equation 4 and taking the limit  with  we have

For the negative  we have:

The same idea can be used to establish the fact about .

The local sensitivity result Equation 5 provides a way to understand the impact of constraints on the optimal solution  of an optimization
problem. If a constraint  is negative at , it’s not a!ecting the optimal solution, meaning small changes to this constraint won’t alter the
optimal value. In this case, the corresponding optimal Lagrange multiplier will be zero, as per the principle of complementary slackness.

However, if , meaning the constraint is precisely met at the optimum, then the situation is di!erent. The value of the -th optimal
Lagrange multiplier, , gives us insight into how ‘sensitive’ or ‘active’ this constraint is. A small  indicates that slight adjustments to the
constraint won’t significantly a!ect the optimal value. Conversely, a large  implies that even minor changes to the constraint can have a
significant impact on the optimal solution.
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5.4 Shadow prices or tax interpretation

Consider an enterprise where  represents its operational strategy and  is the operating cost. Therefore,  denotes the profit in
dollars. Each constraint  signifies a resource or regulatory limit. The goal is to maximize profit while adhering to these limits, which is
equivalent to solving:

The optimal profit here is .

Now, imagine a scenario where exceeding limits is allowed, but at a cost. This cost is linear to the extent of violation, quantified by . The charge
for breaching the  constraint is . If , meaning the constraint is not fully utilized,  represents income for the firm.
Here,  is the cost (in dollars) per unit of violation for .

For instance, if  limits warehouse space, the firm can rent out extra space at  dollars per square meter or rent out unused space for
the same rate.

The firm’s total cost, considering operational and constraint costs, is . The firm aims to minimize ,
resulting in an optimal cost . The dual function  represents the best possible cost for the firm based on the prices of constraints , and
the optimal dual value  is this cost under the most unfavorable price conditions.

Weak duality implies that the cost in this flexible scenario (where the firm can trade constraint violations) is always less than or equal to the cost in
the strict original scenario. This is because any optimal operation  from the original scenario will cost less in the flexible scenario, as the firm
can earn from underused constraints.

If strong duality holds and the dual optimum is reached, the optimal  represents prices where the firm gains no extra advantage from trading
constraint violations. These optimal  values are o"en termed ‘shadow prices’ for the original problem, indicating the hypothetical cost of
constraint flexibility.

5.5 Mixed strategies for matrix games

In zero-sum matrix games, players 1 and 2 choose actions from sets  and , respectively. The outcome is a payment from
player 1 to player 2, determined by a payo! matrix . Each player aims to use mixed strategies, choosing actions according to a
probability distribution: player 1 uses probabilities  for each action , and player 2 uses .

The expected payo! from player 1 to player 2 is given by . Player 1 seeks to minimize this expected payo!, while
player 2 aims to maximize it.

Assuming player 2 knows player 1’s strategy , player 2 will choose  to maximize . The worst-case expected payo! is thus:

x f (x)0 −f (x)0

f (x) ≤i 0

s.t. 

f (x) →0
x∈Rn
min

f (x) ≤ 0, i = 1, … , mi

−p∗

fi

ith λ f (x)i i f (x) <i 0 λ f (x)i i

λi f (x)i

f (x) ≤1 0 λ1

L(x, λ) = f (x) +0 λ f (x)∑i=1
m

i i L(x, λ)
g(λ) g(λ) λ

d∗

x∗

λ∗

λ∗

The scheme of a mixed strategy matrix game

{1, ..., n} {1, ..., m}
P ∈ Rn×m

uk i vl

u v P =∑k=1
n ∑l=1

m
k l kl u P vT

5.5.1 Player 1’s Perspective
u v u P vT



Player 1’s optimal strategy minimizes this worst-case payo!, leading to the optimization problem:

This forms a convex optimization problem with the optimal value denoted as .

Conversely, if player 1 knows player 2’s strategy , the goal is to minimize . This leads to:

Player 2 then maximizes this to get the largest guaranteed payo!, solving the optimization problem:

The optimal value here is .

It’s generally advantageous to know the opponent’s strategy, but surprisingly, in mixed strategy matrix games, this advantage disappears. The key
lies in duality: the problems above are Lagrange duals. By formulating player 1’s problem as a linear program and introducing Lagrange
multipliers, we find that the dual problem matches player 2’s problem. Due to strong duality in feasible linear programs, , showing no
advantage in knowing the opponent’s strategy.

We approach problem Equation 6 by setting it up as a linear programming (LP) problem. The goal is to minimize a variable , subject to certain
constraints:

1. ,
2. The sum of elements in  equals 1 ( ),
3.  is less than or equal to  times a vector of ones ( ).

Here,  is an additional variable in the real numbers ( ).

We introduce multipliers for the constraints:  for ,  for , and  for . The Lagrangian is then formed as:

The dual function  is defined as:

The dual problem seeks to maximize  under the following conditions:

u P v =
v≥0,1 v=1T

max T (P u)
i=1,...,m
max T

i

min (P u)
i=1,...,m
max T

i

s.t. u ≥ 0

1 u = 1T

(6)

p1
∗

5.5.2 Player 2’s Perspective
v u P vT

u P v =
u≥0,1 u=1T

min T (P v)
i=1,...,n
min i

max (P v)
i=1,...,n
min i

s.t. v ≥ 0

1 v = 1T

(7)

p2
∗

5.5.3 Duality and Equivalence

p =1
∗ p2

∗

5.5.4 Formulating and Solving the Lagrange Dual
t

u ≥ 0
u 1 u =T 1

P uT t P u ≤T t1

t t ∈ R

5.5.5 Constructing the Lagrangian
λ P u ≤T t1 μ u ≥ 0 ν 1 u =T 1

L = t + λ (P u −T T t1) − μ u +T ν(1 − 1 u) =T ν + (1 − 1 λ)t +T (P λ − ν1 − μ) uT

5.5.6 Defining the Dual Function
g(λ, μ, ν)

g(λ, μ, ν) = {ν

−∞
if 1 λ = 1 and P λ − ν1 = μT

otherwise

5.5.7 Solving the Dual Problem
ν



1. ,
2. The sum of elements in  equals 1 ( ),
3. ,
4. .

Upon eliminating , we obtain the Lagrange dual of Equation 6:

This formulation shows that the Lagrange dual problem is equivalent to problem Equation 7. Given the feasibility of these linear programs, strong
duality holds, meaning the optimal values of Equation 6 and Equation 7 are equal.
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λ ≥ 0
λ 1 λ =T 1

μ ≥ 0
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max ν

s.t. λ ≥ 0
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5.5.8 Conclusion
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